Multithreaded applications (1)

A thread of execution is the smallest sequence of programmed instructions that an
operating system can manage independently.

Multitasking: several processes run concurrently (or seem to run concurrently).
Between processes the computer resources (like memory, ports, etc.) are not shared,
For example each process has its own address space.

Multithreading: several threads run concurrently (or seem to run concurrently) within
one process. Several threads can share the same resource, for example a section of
memory.

On single processor systems the processor switches from one thread to another. When the
time slice allocated for a thread has expired, the processor starts to execute instructions
from another thread. As the time slices are short, the user percieves that the threads

are running on the same time. On multiprocessor (multicore) systems each processor may
run a particular thread, 1.e. the threads are actually running on the same time.

A thread may be 1n three states: Operating (has (_jp{_nl
Waiting for CPU 4¢— Blocked

When a thread needs a resource currently occupied by another thread or waits for data from
external sources, it 1s in the blocked state. The other threads continue to work.

Multithreaded applications (2)

When you must create threads:

1. You have some subtasks that take a large amount of time (searching, printing, etc.).
2. You need to communicate with external data sources (web, devices connected to
your computer, etc.) which may send data to you or read data you want to send them
at occasional moments. It may even happen that they do not want to communicate
with you. A single-thread application waiting for data from external source freezes and
becomes uncontrolable.

3. You have subtasks with different priority.

4. You have user interface which must be responsive - 1.e. react to the user actions (for
example mouse clicks) immediately.

main() 1s 1n the primary (or main) thread. The main thread may 1nitialize and launch
another threads, those in turn can also have their own child threads and so on.

Each thread must have its thread entry point function which corresponds to the main()
of the primary thread.

Each thread has its own stack for local variables. The global variables are common to
all the threads.

Threads (1)

#include <thread> // See https://en.cppreference.com/w/cpp/thread/thread.html
using namespace std;

To declare a thread and launch it, write:
thread thread object name(entry point function name,
list of input parameters);
The entry point function may have any set of input parameters, but no return value.

Example: suppose we have function

void PrintTextFile(string FileName);

To organize the printing in background write

thread BackgroundPrinting(PrintTextFile, string("c:\\temp\\data.txt"));

The thread stops when its entry point function quits. The question 1s what happens if the
thread object 1s destroyed (automatically as a local variable or by delete operator) before
the end of entry point function. For example:

int main()

d

thread BackgroundPrinting(PrintTextFile, string("c:\\temp\\data.txt"));

return 0; // still printing, but BackgroundPrinting thread object goes out of scope

b

http://www.cplusplus.com/reference/thread/

Threads (2)

There are two solutions:
void fun()

{
thread BackgroundPrinting(PrintTextFile, string("c:\\temp\\data.txt"));

BackgroundPrinting.join(); // main thread waits until the PrintTextFile returns
return;

b
void fun()

{
thread BackgroundPrinting(PrintTextFile, string("c:\\temp\\data.txt"));

BackgroundPrinting.detach(); // we get a thread that runs independently.

If a thread is detached (called also as daemon thread), it just keeps running in the
background until the end of entry point function. Destroying of the thread object does not
stop the detached thread. However, when the process dies (i.e. the main() returns), it kills
all the running detached threads.

If a thread 1s not detached and we destroy the thread object without applying join, we'll
get a run-time error.

Threads (3)

If the entry point function 1s a member of a class:
thread thread object name(&class name::entry point function name,
pointer to object, list of input parameters);

Example: suppose we have class
class Printers

and object:
Printers *pHP_LaserJet = new Printers;
then to create and launch the background printing write:

thread BackgroundPrinting(&Printers::PrintTextFile, pHP laserJet,
string("c:\\temp\\data.txt"));

If the function launching thread and the entry point function are members of the same
class and belong to the same object, pointer to object 1s of course pointer this.

Threads (4)

The entry point may be specified by lambda expressions:

thread thread object name(lambda expression);

Example:

const char *pTextFile = "c:\\temp\\data.txt";

thread BackgroundPrinting([&]() { PrintTextFile(pTextFile); });

Also, 1t 1s possible to write a new class and apply functors. Example:

class PrintThread

d

private: const char *pFile;

public: PrintThread(const char *p) : pFile(p) { } // parameter 1s specified in constructor
operator() () const { PrintTextFile(pFile); }

Js

PrintThread pt("c:\\temp\\data.txt"); // create functor object

thread BackgroundPrinting(pt); // functor object presents the entry point function

or

thread BackgroundPrinting(PrintThread("c:\\temp\\data.txt")); // create nameless functor

or with uniform initialization

thread BackgroundPrinting { PrintThread("c:\\temp\\data.txt") }; // here we create object
// BackgroundPrinting and initialize 1t with nameless functor

Threads (5)

Alternative:
class PrintThread

d

public: // no constructor, just operator()
operator() (const char *p) const { PrintTextFile(p); }

g
thread BackgroundPrinting(PrintThread(), "c:\\temp\\data.txt"); // create nameless object

or

PrintThread pt;
thread BackgroundPrinting(pt, "c:\\temp\\data.txt"); // use previously defined object

Threads (6)
Let us have a simple thread:
void Test () {
intn = 10;
thread Worker([&]() { for (int1=0; 1 <n; 1++)
d

this thread::sleep for(chrono::seconds(1));
cout <<1 << endl;
+ // thread body 1s a lambda
cout << "Ready"; });
.................................... // do something
return; // here the Worker object is destroyed

b

If the thread object 1s destroyed when the thread 1s still running, the program will creash. The
solution 1s to use method join:

Worker.join(); // blocks function Test() until the end of thread

The problem here is that function 7est may have several return amd throw points, so we need
to call join 1n many places. If, in addition, we have more than one thread, we may get very
complicated and indistinct code.

If we instead of class thread apply C++ v. 20 class jt/hread, method join 1s called automatically
by the destructor of this class and the code presented on this slide will work.

Threads (7)
void Test () {
........................... // Do something
jthread Worker(/* entry point function and input parameters */) ;
........................... // Do something
if (/* some condition */) {
return; // no need to call join

try {
........................... // Do something

catch (exception) {
return; // no need to call join
)
Worker.join();
........................... // the thread has finished, analyse the results

Jjthread provides the same interface as thread so 1t 1s possible in old code simply add character j
to classname thread. Header file <thread> presents the both classes.

Class this thread

Class this thread has several static methods allowing the current thread to control itself.

this thread::sleep for(duration);

blocks the current thread for the specified time interval. Example:

this thread::sleep for(chrono::seconds(5));

this thread::sleep until(time point);

blocks the current thread until the specified moment. Example:

time t now t = chrono::system clock::to time t(chrono::system clock::now());
struct tm now_tm:;

localtime s(&now tm, &now t);

now tm.tm sec =now tm.tm min = 0;

now tm.tm hour++;

this thread::sleep until(chrono::system clock::from time t(mktime(&now tm)));
// for example, 1f time 1s now 14:05:00 then the thread resumes its work at 15:00:00

Exceptions in threads (1)

Suppose that our main thread has launched another thread. An exception has occurred in
this thread but for some reasons the handling of it in the launched thread itself 1s not
possible and should be transferred to the main thread. For solution the problem we need:

* An object of class exception ptr, used for storing the exception. This object 1s actually a
smart pointer. It must be accessible for the launched thread as well as for the main
thread.

* Function current exception() creating from ordinary exception an object of class
exception_ptr (actually storing the exception).

* Function rethrow exception() allowing to transform the object of class exception ptr
back to ordinary exception.

See also https://en.cppreference.com/w/cpp/error/exception ptr.html

https://en.cppreference.com/w/cpp/error/exception_ptr.html

Exceptions in threads (2)

int main()
d
exception ptr Ex ptr = nullptr; // smart pointer Ex ptr will store the exception
thread Task(TaskMain, &Ex ptr,);
Task.join(); // wait for end of thread Task
try
d
if (Ex_ptr)

{ // was there an exception in the thread?
rethrow exception(Ex ptr); // transform back to normal exception

)
h

catch (const exception& ¢)
{ // process the restored exception
cout << e.what() << endl;

b

return O;

b

Exceptions in threads (3)
In thread:
void TaskMain(exception ptr *pEx ptr,)

catch (exception)

d

*pEx ptr = current exception(); // instead of handling store the exception
return;

Race conditions (1)

Mostly, threads share some resources. Suppose we have two threads and they share an
integer static int x = 1, One of them increments and the other decrements it. Those
operations are performed in 3 steps: retrieving the value from memory, incrementing or
decrementing and sending back into the memory. As the thread scheduling mechanism can
swap between threads at any time, the final result is unpredictable:

Thread 1 Thread 2 Thread 1 Thread 2

Retrieve x (value 1) Retrieve x (value 1)
Increment x Decrement
Store x (value 2) Store x (value 0)
Retrieve x (value 2) Retrieve x (value 0)
Decrement x Increment
Store x (value 1) Store x (value 1)
Retrieve x (value 1) Retrieve x (value 1)
Retrieve x (value 1) Increment
Decrement Retrieve x (value 1)
Store x (value 0) Decrement
Increment Store (value 2)

Store x (value 2) Store (value 0)

Race conditions (2)

From https://support.microsoft.com/en-us/help/317723/description-of-race-conditions-
and-deadlocks:

A race condition occurs when two threads access a shared variable at the same time. The
first thread reads the variable, and the second thread reads the same value from the
variable. Then the first thread and second thread perform their operations on the value, and
they race to see which thread can write the value last to the shared variable. The value of
the thread that writes its value last is preserved, because the thread is writing over the
value that the previous thread wrote.

For us the thread execution is nondeterministic, therefore we cannot control the time or
order of execution. It may happen that the "race" does not occur at all (tables 1 and 2). But
if 1t does occur, the "winner" may be any of the threads and therefore the final result 1s
unpredictable (tables 3 and 4).

The solution 1s to lock the shared memory. It means that when one of the threads is
operating with the shared memory field, the other thread(s) must stop and wait for the first
one to release the shared memory.

https://support.microsoft.com/en-us/help/317723/description-of-race-conditions-and-deadlocks
https://support.microsoft.com/en-us/help/317723/description-of-race-conditions-and-deadlocks
https://support.microsoft.com/en-us/help/317723/description-of-race-conditions-and-deadlocks
https://support.microsoft.com/en-us/help/317723/description-of-race-conditions-and-deadlocks
https://support.microsoft.com/en-us/help/317723/description-of-race-conditions-and-deadlocks
https://support.microsoft.com/en-us/help/317723/description-of-race-conditions-and-deadlocks
https://support.microsoft.com/en-us/help/317723/description-of-race-conditions-and-deadlocks
https://support.microsoft.com/en-us/help/317723/description-of-race-conditions-and-deadlocks
https://support.microsoft.com/en-us/help/317723/description-of-race-conditions-and-deadlocks
https://support.microsoft.com/en-us/help/317723/description-of-race-conditions-and-deadlocks
https://support.microsoft.com/en-us/help/317723/description-of-race-conditions-and-deadlocks
https://support.microsoft.com/en-us/help/317723/description-of-race-conditions-and-deadlocks
https://support.microsoft.com/en-us/help/317723/description-of-race-conditions-and-deadlocks

Race conditions (3)

More generally, we have to synchronize the threads:

* When one of the threads owns a resource (array, linked list, disk file, COM port, etc.),
the other threads can access this resource for reading only. The have no right to change
anything on that resource.

» If a thread needs a resource owned by another thread for writing (i.e. changing data), it
must wait until the resource is released.

* When the thread owning a resource does not need it more, it has to release the resource
and signal about it to the other threads.

Key problems: communication between threads, locking resources.

The code must be thread-safe.

Mutexes (1)

Let us have two threads:

.

The producer thread retrieves data from an external source or generates data in some
other way. If a package of data is ready, it stores it in a buffer. Time interval needed to
create a package 1s occasional.

The consumer thread reads the data from the buffer it shares with the producer and
processes it and / or views on the screen. Time interval needed to process a package
and view it is also occasional.

It may happen that the consumer starts to process data when the producer has not yet
finished the storing of new package. It may also happen that the producer starts to store the
new package when the consumer has not yet finished the processing of previous package.

Consequently, to synchronize the work of threads we need a mechanism guaranteeing that

.

When the producer is accessing the shared buffer, the consumer has no right to access
it. If the consumer tries to access the buffer, 1t will be blocked until the producer
releases the buffer.

When the consumer is accessing the shared buffer, the producer has no right to access
it. If the producer tries to access the buffer, it will be blocked until the consumer
releases the buffer.

In C++ this mechanism 1s implemented by mutexes (mutual exclusion classes).

Mutexes (2)

#include <mutex> // see https://en.cppreference.com/w/cpp/thread/mutex.html

mutex mx; // must be accessible in both threads

// Producer:

mx.lock();

// code 1n which buffer is accessed
mx.unlock();

lock ———feee

unlock —

it

Actually, we do not lock the shared memory field but mark the section of code in which

the shared memory is accessed.

// Consumer:

mx.lock();

// code 1n which buffer 1s accessed
mx.unlock();

lock

\9

unlock

If the threads need the shared memory only for reading, mutexes are unnecessary.

https://en.cppreference.com/w/cpp/thread/mutex.html

Mutexes (3)

class Producer
{ // task: create random data on an occasional moment
public:
vector<int> *pBuf; // shared resource
mutex *pMXx;
Producer(vector<int> *pv, mutex *pm) : pBuf(pv), pMx(pm) { } // constructor
void operator() ()
{
distr
uniform int distribution<int> value distribution(0, 100);
pMx->lock();
this thread::sleep for(chrono::milliseconds(delay distribution(generator)));
// pause, random duration
ranges::generate(*pBuf, [&]() { return value distribution(generator);});
// fill the vector with random numbers
pMx->unlock();

Mutexes (4)

class Consumer
{ // task: print the created data
public:
vector<int> *pBuf; // shared resource
mutex *pMXx;
Consumer(vector<int> *pv, mutex *pm) : pBuf(pv), pMx(pm) { } // constructor
void operator() ()

d

this thread::sleep for(chrono::milliseconds(2500)); // see comment on the next slide
pMx->lock();

for each(pBuf->begin(), pBuf->end(), [](int 1) { cout <<1<<'"; });

cout << endl;

pMx->unlock();

b
55

Mutexes (5)
int main()
d
mutex mx;
vector<int> buf(32);
thread ProducerThread { Producer(&buf, &mx) }; // uniform initialization, see slide
// STL Threads (4)
thread ConsumerThread { Consumer(&buf, &mx) };
// see slide Threads (4)
ProducerThread.join();
ConsumerThread.join();
return 0;

b

Comment:

The producer starts first but we cannot be sure that it locks the mutex before the consumer
applies the locking. If the consumer is faster, it prints zeroes and then allows the producer
to work. Therefore we have blocked the consumer for a while. This is not a good way to
solve the problem. Later we'll see how to solve it with conditional variables.

Mutexes (6)

Method 77y lock works 1n the following way:
 If the mutex is not locked by another thread, it will be locked
* If the mutex is locked by another thread, it returns immediately with false.

Usage example:
while (true)

d
if (mx.try lock())
d
................................... // critical section operations
mx.unlock();
break;
b
clse
d
.................................... // do something else, then try once more to enter
b

Mutexes (7)

If a thread 1s 1n critical section and hangs, the mutex 1s never unlocked and the other
threads cannot continue. The solution is timed mutex that has methods ¢y lock for and
try lock until:

* [f the mutex is not locked by another thread, it will be locked immediately.

* [f the mutex is locked by another thread, it tries to lock it until the specified time
interval has elapsed or the specified time point reached. If the locking is still
impossible, false 1s returned.

Usage example:

timed mutex tmx; // see https://en.cppreference.com/w/cpp/thread/timed mutex.html

chrono::milliseconds timeout(1000); // timeout duration

if (tmx.try lock for(timeout))

{ // successful locking

................................... // critical section operations
tmx.unlock();

h
else // 1000ms has elapsed but locking is still not possible
d
cout << " Problems: the other thread has frozen" << endl;
h

Timed mutexes can operate as ordinary mutexes, 1.e. they support also methods /ock() and
try lock().

https://en.cppreference.com/w/cpp/thread/timed_mutex.html

Mutexes (8)

To simplify locking and unlocking with mutexes use class lock guard:

lock guard<mutex> lock guard name(associated mutex name);

Example:

#include <mutex> // see https://en.cppreference.com/w/cpp/thread/lock guard.html
mutex mx;

lock guard<mutex> lock(mx); // constructor for object lock of class lock guard

The lock guard has only two methods: contructor and destructor.
* When the constructor is called, the /ock() method of the associated mutex is also called.
* When the destructor is applied, the unlock() method of the associated mutex is also

called.

With manual locking, you have to ensure that the mutex is unlocked correctly on every
exit path from the region where you need the mutex locked, including when the region is
exited due to an exception. Having a local lock guard object (i.e. auto memory class) it is
not a problem: even if an exception is thrown, the destructor is applied and the mutex
released. The mutex itself may be a global variable or input parameter of the thread entry
point function.

https://en.cppreference.com/w/cpp/thread/lock_guard.html

Mutexes (9)

The unique lock 1s more flexible:
unique lock<mutex> unique lock name(associated mutex name);

//"as lock guard — the constructor locks the associated mutex.
unique lock<mutex> unique lock name(associated mutex name, std::defer lock);
// the constructor does not lock the associated mutex

To lock later you may use methods:

* Jlock() as the lock() of mutex

* try lock() as the try lock() of mutex

* try lock for asthe try lock for of timed mutex

* try lock until as the try lock until of timed mutex

The destructor of unique lock unlocks the associated mutex. But you may also unlock
with unlock() method. Example:

mutex mx; // see https://en.cppreference.com/w/cpp/thread/unique lock.html

unique lock<mutex> lock (mx, std::defer lock);

if (...)
return; // unlocks mutex mx

lock.unlock(); // unlocks the mutex mx

https://en.cppreference.com/w/cpp/thread/unique_lock.html

Mutexes (10)

Some terminology:

mutex mx;

mx.lock(); //the thread acquires the mutex
...................... // the thread owns the mutex
mx.unlock(); // the thread releases the mutex

unique lock<mutex> lock(mx, std::defer lock);
lock.lock(); // the thread acquires the lock
.......................... // the thread owns the lock
lock.unlock(); // the thread releases the lock

Call a function just once (1)

Suppose we have two threads sharing a common but not initialized yet resource. The code
of both threads starts with the call to initializing function. For example, one of the threads
sends data to an external device, the other receives data and the shared device 1s a COM
port or a TCP/IP socket. It 1s unknown which of the threads will call the initializer first.
But it is clear that the initializer must be called only once.
void ::1nitializer();

// initializes the common resource, for simplicity let it to be out of classes
class Thread 1 { void operator()() { mtializer(); ... }};
class Thread 2 { void operator()() { imitializer(); ... }};

The most effective solution to similar problems is to apply the call once mechanism:
1. Define variable of type once flag, it must be accessible for both threads:

once flag flag name;
2. In both threads call the initializer in this way:

call once(flag, pointer to initializer, list of initializer parameters);

If the first thread wants to call the initializer when the second thread is currently
intializing, 1t blocks until the end of initializing and then continues without stepping into
initializer. If the first thread wants to call the initializer when the second thread has already
finished the initializing, it continues immediately. Thus the faster thread performs the
initialization and the slower omits this step.

Call a function just once (2)

If you have several functions to be called only once you need also several flags.

The initializer may be a function, class method or functor. About details see
https://en.cppreference.com/w/cpp/thread/call _once.html/ .

Example:
#include <mutex>
void ::OpenFile(const char *pFilename, fstream **pFile) {.........................
class Calculate 1
d
public:
once flag *pFlag;
fstream *pSharedFile;
Calculate 1(once flag *pl, fstream *p2) : pFlag(pl), pSharedFile(p2) { }
void operator() ()

d
call once(*pFlag, OpenFile, "c:\\temp\\data.txt", &pSharedFile);

'

// class Calculate 2 1s similar

http://www.cplusplus.com/reference/mutex/call_once/

Call a function just once (3)

int main()
{
once flag flag;
fstream *pDataFile;
thread thread 1{ Calculate 1(&flag, pDataFile) };
thread thread 2{ Calculate 2(&flag, pDataFile) };
thread 1.jo1in();
thread 2.join();
return 0;

h

One of the threads (impossible to say which) opens the file

Atomic variables (1)

If a single variable 1s shared, we may lock the operations with 1t using mutexes. But it 1s
more efficient to declare them as atomic variables.

An atomic operation 1s a machine instruction that 1s always executed without interruption.
A sequence of two or more machine instructions isn't atomic since the operating system
may suspend the execution of the current sequence of operations in favour of another task.
A C++ statement 1s atomic if the compiler translates it into a single machine instruction.
But each hardware architecture may translate the same C++ statement in its own different
way. So it 1s wise to say that none of the C++ 1s statements 1s atomic. See also slide Race
conditions (1).

An operation with atomic variables of course needs a sequence of machine instructions. But
the execution of this sequence 1s not interrupted. In other words, an operation with atomic
variables 1s locked although we need not to declare any mutexes for them.

#include <atomic> // see https://en.cppreference.com/w/cpp/atomic/atomic.html
using namespace std;

atomic<int> 1(0);

atomic<char> c('A’);

atomic<long> 1(100000);

............................. // all the integral types are allowed

I, ¢, [etc. are objects. Their initialization 1s compulsory.

https://en.cppreference.com/w/cpp/atomic/atomic.html

Atomic variables (2)

Due to operator functions we may write simply:
atomic<int>1= 0;

atomic<char>c ="'A";

atomic<long> 1= 100000;

Functions declared in atomic classes are interlocked functions. It means that 1f one of the
functions associated with an atomic variable is running and another thread tries to call this
or some other function of the same atomic variable, this thread has to wait. In other words,
the functions of atomic classes lock and unlock their inner contents automatically. For
example:

i.store(1); // or due to operator functions we may write also 1= 1;

if (1.load() == 1) // or due to operator functions we may write also if (1==1)
Some examples about the other atomic class functions:

i.fetch add(1); // or due to operator functions we may write also 1++;
i.fetch add(10); // or due to operator functions we may write also 1+=10;
i.fetch sub(1); // or due to operator functions we may write also 1--;

But:

atomic<int> 11 = 10;
atomic<int>12 =11; // error

12 =11; // error

12.exchange(11); // meaning: 12 =11

Atomic variables (3)
Similarly:
atomic<int>11 = 10, 12 = 20, 13 = 0;
13.exchange(il +12); //13 =11 +12
cout << 13 << endl;
13.exchange(1l *12); //13 =1l *12
Atomic pointers are also allowed, for example:
atomic<vector<int> *> pv = new vector<int>(10);
atomic<int *> p1 =new int[10];
Pointer operations are supported with overloaded operators, for example
*p1=10;
*(p1+ 1) = 20;

Thread interrupt (1)

Rather often a thread runs in endless loop and we need a mechanism to interrupt it. In C++
killing of thread 1s not allowed. What we need are tools for so called cooperative
(sometimes said polite) cancellation with which we force the thread entry point function to

return. In the following example we use an afomic<boo!> variable for that:
class Worker {

public:
vector<int> &buf;
atomic<bool> &stop;
Worker (vector<int> &v, atomic<bool> &b) : buf(v), stop(b) { }
void operator() () {
default random engine generator;
uniform_int_distribution<int> delay _distribution(0, 10000);
uniform_int_distribution<int> value distribution(0, 100);
while (!stop) { // worker runs until stop becomes true (polls value of variable stop)
this thread::sleep for(chrono::milliseconds(delay distribution(generator)));
ranges::generate(buf, [&]() { return value distribution(generator); });
..................... // do something with the generated numbers

Thread interrupt (2)

class Controller

{
public:
atomic<bool> &stop;
Controller(atomic<bool> &b) : stop(b) { }
void operator() ()
{
getch(); // the human operator has to press a key to stop worker
stop = true;
h
¥
int main()
{

atomic<bool> stop = false;
vector<int> buf(32);
thread ControllerThread { Controller(stop) };

thread WorkerThread { Worker(buf, stop) };
WorkerThread.join();

ControllerThread.join();
return o;

Thread interrupt (3)

In the previous example the thread entry point function checks periodically the stop flag and
quits 1f an outer function has set it to false. Class jthread has better tools:
#include <stop token>// see https://en.cppreference.com/w/cpp/header/stop token
void Worker(int n, stop token stop) { // obligatory parameter of type stop token
for (int1=0; 1 <n && !stop.stop requested(); i++) {
this thread::sleep for(chrono::seconds(1));
cout << 1<<endl;
+// the thread must time to time poll the state of stop token object

h

void Test {
stop source source; // to control the interrupting
stop token stop = source.get token();
jthread thr(Worker, 10, stop);
this thread::sleep for(chrono::seconds(5)); // allow to run 5 seconds and then interrupt
source.request stop(); // after that stop requested() in Worker returns true

;

https://en.cppreference.com/w/cpp/header/stop_token

Thread interrupt (4)

It 1s possible to associate the stop token object with a callback (function, functor or
lambda). The callback 1s invoked when the stop 1s requested:
void Worker(int n, stop token stop)
{
stop callback OnRequest(stop, []() { cout << "Broken" << endl; });
for (int1=0; 1 <n && !stop.stop requested(); i++)
{// the thread must time to time check the state of stop token object
this thread::sleep for(chrono::seconds(1));
cout <<1<<endl;

h
b

void Test
{
stop source source; //to control the interrupting
stop token stop = source.get token();
jthread thr(Worker, 10, stop);
this thread::sleep for(chrono::seconds(5));
source.request stop(); // after that stop requested() in Worker returns true
// in addition callback OnRequest 1s invoked,
// 1.e. message "Broken" is printed

Condition variables (1)

Inter-thread communication in C++ 1s implemented by condition variables. Let us have two
threads:

1. The producer thread retrieves data from an external source or generates data in some
other way. If a package of data 1s ready, it stores it in a buffer. Time interval needed to
create a package is occasional.

2. The consumer thread reads the data from the buffer shared with the producer and
processes it and / or views on the screen. Time interval needed to process a package and
view it i1s also occasional. Problem: the processing may start only when the producer has
finished its task.

#include <condition variable>

// see https://en.cppreference.com/w/cpp/thread/condition_variable.html
mutex mx; // must be accessible in both threads
condition variable cv; // must be accessible in both threads, cooperates with mutex

// Producer: // Consumer:
d d
unique lock<mutex> lock(mx); unique lock<mutex> lock(mx);
.... // code in which buffer is accessed cv.wait(lock);
cv.notify one(); // code in which buffer is accessed

h h

https://en.cppreference.com/w/cpp/thread/condition_variable.html

Condition variables (2)
wait(unique lock name);
The wait method can be called only when the thread is already locked by unique lock
managing the associated mutex. It:
1. Automatically releases the lock (atomically calls unlock() of the associated unique lock),
thus allowing the other thread to run.
2. Blocks its own thread and starts to wait for a notification.
3. Unblocks its thread when the other thread has emitted the notification.
4. Locks again (before return atomically calls lock() of the associated unique lock).

Notification 1s emitted by method notify one() called from another thread.

If several threads are waiting, notify one() releases only one of them (1impossible to say
which). Method rnotify all() sends notification to all the threads stopped by the current
conditional variable. If there are no waiting threads, those functions do nothing.

{ // Consumer:
unique lock<mutex> lock(mx);
cv.wait(lock);
// blocks consumer and releases
// the lock, producer can start
.... // code 1n which buffer 1s accessed

Y h

{ // Producer:
unique_lock<mutex> lock(mx);
..... // code 1n which buffer is accessed
cv.notify one();
// releases consumer

Condition variables (3)

wait(unique lock name, predicate);

The predicate may be a pointer to function, lambda expression or functor. It cannot have
any arguments and it must return true or false.

wait() with predicate:

.
2.

)

If the predicate has returned #rue, does nothing and returns immediately.

If the predicate has returned false, releases the lock (atomically calls unlock() of the
associated unique lock), thus allowing the other thread to run.

Also, 1f the predicate has returned false blocks its thread and starts to wait for a
notification.

If the notification has arrived, calls the predicate once more.

If the predicate still returns false, the thread stays in blocked state.

If the predicate returns true, unblocks its thread and locks the associated unique lock.

std::notify all at thread exit(condition variable name, unique lock name);
This function not belonging to any classes is mostly called before join to release threads
that may be have got stuck.

Condition variables (4)

Example:
int main()
d
vector<int> buf; // empty vector
mutex mx;
condition variable cv;
thread ProducerThread { Producer (buf, mx, cv, 32) };
thread ConsumerThread { Consumer (buf, mx, cv) };
ProducerThread.join();
ConsumerThread.join();
return 0;

b

// the order of launching threads 1s meaningless

Condition variables (5)
class Producer

{
public:
vector<int> &buf;
mutex &mx;
condition variable &cv;
int buf size;
Producer (vector<int> &v, mutex &m, condition variable &c, int n) :
buf(v), mx(m), cv(c), buf size(n) { }
void operator() ()
{
default random engine generator;
uniform int distribution<int> delay (0, 10000);
uniform_int distribution<int> random number(0, 100);
unique lock<mutex> lock(mx); // locks the mutex
buf.resize(buf size);
this thread::sleep for(chrono::milliseconds(delay(generator)));
ranges::generate(buf, [&]() { return random number(generator); });
cv.notify one(); // releases the comsumer
+ // variable "lock" deleted, mutex automatically unlocked

55

Condition variables (6)
class Consumer

d
public:
vector<int> &buf;
mutex &mx;
condition_variable &cv;
Consumer(vector<int> &v, mutex &m, condition variable &c) :
buf(v), mx(m), cv(c) { }
void operator() ()
d
unique lock<mutex> lock(mx); // locks the mutex
cv.wait(lock, [&]() { return !'buf.empty(); });
// If the buffer 1s empty, unlocks the mutex allowing the producer to work
// and starts to wait for the notification from the producer.
// The producer sends notification when the buffer is filled. Consequently
// predicate then returns true and the thread will be unblocked.
ranges::for each(buf, [](int 1) { cout <<1<<''"; });
cout << endl;

h

15 // destructor called, mutex automatically unlocked

Condition variables (7)

Comments:

1. Suppose that the producer steps into the critical section first. In that case the consumer
must wait until the producer has left the critical section. 1.e. until the end of producer
thread. The first step of the consumer is the call to wait(). As the buffer is already full,
the predicate returns frue and wait() returns immediately - the consumer may start to
run. The notification sent by the producer is 1ignored.

2. Now suppose that the consumer steps into the critical section first and thus blocks the
producer. The first step of the consumer is the call to wait(). As the buffer is empty, the
predicate returns false. Now:

a. wait() unlocks the mutex, the producer may start to run.

b. wait() does not return but starts to wait for the notification. So the consumer is
blocked and the producer may complete its task.

Before return the producer sends notification. wait() in consumer calls once more the

predicate. As the buffer is already filled, the predicate returns true. Now:

a. wait() locks the mutex, but as the producer has already finished, it has no
consequences.

b. wait() returns and thus the consumer may start to run.

So, in this solution we may be sure that at first the producer creates the data and only after

that the consumer processes the data. Compare it with solution on slides Mutexes (3) ...
Mutexes (5).

Condition variables (8)

Example: classical producer — consumer problem in which the producer has to inform the
the consumer that a data package is prepared, wait until the consumer has finished the
processing and start to prepare the next package.

int main()
d
atomic<bool> stop = false;
vector<int> *pBuf = new vector<int>;
mutex mx;
condition variable cv;
thread ControllerThread{ Controller(stop) }; // see slide Atomic variables (5)
thread ProducerThread{ Producer(pBuf, &stop, &mx, &cv, 32) };
thread ConsumerThread{ Consumer(pBuf, &stop, &mx, &cv) };
ConsumerThread.join();
ProducerThread.join();
ControllerThread.join();
return 0;

Condition variables (9)

class Producer {
public: vector<int> *pBuf;
atomic<bool> *pStop;
mutex *pMXx;
condition_variable *pCyv;
int buf size;
Producer (vector<int> *pv, atomic<bool> *pb, mutex *pm, condition_ variable *pc,
int n) : pBuf(pv), pStop(pb), pMx(pm), pCv(pc), buf size(n) { }
void operator() () {
default random engine generator;
uniform int distribution<int> delay (0, 10000);
uniform int distribution<int>random number(0, 100);
while (!*pStop) {
unique lock<mutex> lock(*pMx); // locks the mutex
pBuf->resize(buf size);
this thread::sleep for(chrono::milliseconds(delay(generator)));
ranges::generate(*pBuf, [&]() { return random number(generator); });
pCv->notify one(); // releases the comsumer
pCv->wait(lock); // blocks the producer

Condition variables (10)

class Consumer {
public: vector<int> *pBuf;
atomic<bool> *pStop;
mutex *pMXx;
condition_variable *pCyv;
Consumer (vector<int> *pv, atomic<bool> *pb, mutex *pm, condition variable *pc) :

pBuf(pv), pStop(pb), pMx(pm), pCv(pc) { }
void operator() () {

while (!*pStop) {
unique lock<mutex> lock(*pMx); // locks the mutex
pCv->wait(lock, [&]() { return !pBuf->empty(); });
ranges::for each(*pBuf, [](int 1) { cout <<1<<'"; });
pBuf->resize(0);
cout << endl;
pCv->notify one(); // releases the producer

Condition variables (11)

wait for(unique lock name, duration);
wait_until(unique lock, time point);

and

wait for(unique lock name, duration, predicate);
wait_until(unique lock name, timepoint, predicate);

Those two methods block the thread until notified or until the specified timeout has
elapsed or timepoint has been reached. The return value is cv_status.:timeout or
cv_status::no timeout. About the usage of predicates see slide Conditional variables (3).

Condition variables (12)

It may happen that when the stop 1s requested (see slide Thread interrupt (3)), a thread 1s
waiting for notification for a condition variable and cannot check the state of stop token.
The following example presents the solution of this problem:

void Test {

mutex mx,

condition variable any cv; // use instead of condition variable

// see https://en.cppreference.com/w/cpp/thread/condition_variable any

queue<int> values;

stop source source; // to control the interrupting

stop token stop = source.get token();

jthread thr1(Consumer, &mx, &cv, &values, stop); // on the next slides

jthread thr2(Producer, &mx, &cv, &values, stop);

this thread::sleep for(chrono::seconds(5)); // allow to run 5 seconds and then interrupt

source.request stop();

thrl.join();

thr2.join();
h
condition variable can wait only on unique:lock<mutex>. condition variable any can wait
on any lockable object (i.e. on anything that has lock() and unlock() methods). In addition,
with condition variable any we can stop waiting not only with notification but also with
interrupting the thread.

https://en.cppreference.com/w/cpp/thread/condition_variable_any

Condition variables (13)

vold Producer(mutex® pmx, condition variable any™ pcv, queue<int>* pvalues,

stop token stop)

{ // the Producer must insert into a queue 10 random numbers
default random engine generator;
uniform int distribution<int>random number(0, 100);
unique lock<mutex> lock(*pmx);
for (int1=0;1<10; 1++) {

if (stop.stop requested()) {
cout << "Stop request detected" << endl;
while (!pvalues->empty()) {
pvalues->pop(); // interrupt, clean the queue and exit

b

return;

b

pvalues->push(random number(generator));
this thread::sleep for(chrono::milliseconds(1000));

b

pcv->notify one(); // queue is filled, allow the consuer to start
cout << endl;

)

Condition variables (14)

void Consumer(mutex *pmx, condition variable any *pcv, queue<int> *pvalues,
stop token stop) {
unique lock<mutex> lock(*pmx);
pcv->wait(lock, stop, [&]() { return !pvalues->empty(); });
// waiting ends when the notification has arrived or when the stop 1s requested
if (stop.stop requested()) {
cout << "Waiting broken off" << endl;
return;

b
while (!pvalues->empty()) { // prints the results
cout << pvalues->front() <<'';

pvalues->pop();
b

cout << endl;

async and futures (1)

Suppose our program consists of 3 tasks. The final task 3 needs data prepared by tasks 1 and 2.
There are no any dependences between tasks 1 and 2: they do not need request data from each
other, do not share resources, etc. If we have a multiprocessor computer, we may put task 2
into a separate background thread and force 1t run concurrently with task 1: thus we may get
better performance.

There 1s another way: use function szd::async and futures:
future <entry point function return value type> future name =
async(entry point function name, list of input parameters);

The task entry point function may have any set of input parameters. Example: suppose the
entry point function for task 2 is:
bool ReadData(unsigned char *, int);

To start asynchronous reading task:
#include <future> // see https://en.cppreference.com/w/cpp/thread/future.html
// see https://en.cppreference.com/w/cpp/thread/async.html
unsigned char *pBuf = new unsigned char[1024 * 10];
future<bool> result = async(ReadData, pBuf, 1024 * 10); // task 2 1s now 1n a separate thread
... // program continues with task 1
if (result.get()) // method get() returns the return value of task entry point function
{ // you can call gef on a specific future only once!
........................... // program starts to execute task 3

https://en.cppreference.com/w/cpp/thread/future.html
https://en.cppreference.com/w/cpp/thread/async.html

async and futures (2)

async does not guarantee that a separate thread with the specified entry point function will

start immediately. When the future's get() method is called, it 1s possible that:

* The asynchronous task has finished and get() returns the output value immediately.

* The asynchronous task is still running. In that case get() blocks the current thread until
the return value has become available.

* The asynchronous task has not started yet. Then it 1s forced to start, the current thread
blocks. Actually it means that the ansynchronous executing of tasks has failed. If the
call to get() 1s omitted, it may happen that the asynchronous task never starts.

There are some possibilities to control the behavior of asynchronous task:

future< entry point function return value type> future name =
async(launch policy, entry point function name, list of input parameters);

The launch policy may be:

1. launch::async — try to launch a new thread immediately. May be risky because if it 1s
not possible, exception will be thrown.

2. launch::deferred — launch when get() 1s called, i1.e. no concurrent executing. May be
useful as temporary setting for debugging.

3. launch::async | launch. :deferred — default setting, launch time 1s set by system.

async and futures (3)

Class future has method:

wait();

This function behaves similarly to get(): if the asynchronous task has not finished it blocks
the current thread until the asynchronous task has ended. Also, 1f necessary it forces the
asynchronous task to start. Later, the output value may be retrieved by get().

Class future has also methods:
* wait for(duration);
e wait until(timepoint);
Those functions block the current thread until the asynchronous task has finished or
timeout elapsed or the specified timepoint reached. But they do not force the asynchronous
task to start. Their return value may be:
1. future status..:deferred - the asynchronous task has not started yet.
2. future status::timeout - the asynchronous task is running but waiting time has elapsed.
3. future status::ready - the asynchronous task has finished.
Example:
if (result.wait for(chrono::seconds(60)) != future status::ready) {
d
cout << "It seems that the asynchronous task has problems" << endl;
return;

h

wait_for(chrono.:seconds(()) returns us the current status of the asynchronous task.

async and futures (4)
If the asynchronous task has thrown an unhandled exception, get() catches it and rethrows:

try

{
if (result.get())

.................. // program starts to execute task 3

Method wait() does not rethrow exceptions.

Method get() may be called only once. After get() the future becomes invalid. To check the
state of future use method valid() — it returns false 1f the future has become not useable.

In a complicated application with a lot of threads multiple calls to get() may be needed. In
that case use shared future (https://en.cppreference.com/w/cpp/thread/shared future.html).

https://en.cppreference.com/w/cpp/thread/shared_future.html

async and futures (5)

Instead of entry point function we may use functor or lambda. Example:
class Producer
d
public:
list<int> &buf; // reference
int lower, upper;
Producer(list<int> &v, int 1, int u) : buf(v), lower(l), upper (u) { }
void operator() ()
d
default random engine generator;
uniform int distribution<int> delay(0, 10000);
uniform int distribution<int>random number(lower, upper);
this thread::sleep for(chrono::milliseconds(delay(generator)));
ranges::generate(buf, [&]() { return random number(generator); });

async and futures (6)
int main()

d
list<int> buf1(10);
list<int> buf2(10);
future<void> f1 = async(Producer(bufl, 0, 100));
future<void> {2 = async(Producer(buf2, -100, 0));
f1.get(); // here the thread returns nothing but we need to wait until it quits
// so get() from class future behaves as join from class thread
f2.get();
bufl.sort();
buf2.sort();
bufl.merge(bufl);
ranges::for each(bufl, [](int 1) { cout <<1<<'"; });
cout << endl;
return 0;

b

Shortly: a future and async provide facilities to retrieve values and / or exceptions from a
function that 1s located 1n background thread and is currently executing or has already
executed or will be executed (in the last case, they may force to start executing).

async and futures (7)

Example (compare with solution on slides Thread interrupt (1) ... (4)):
class Worker
d
public:
vector<int> &buf;
future<void> &fut;
Worker (vector<int> &v, future<void> &f) : buf(v), fut(f) { }
void operator() ()
d
default random engine generator;
uniform_int_distribution<int> delay distribution(0, 10000);
uniform int distribution<int> value distribution(0, 100);
while (fut.wait for(chrono::seconds(0)) != future status::ready) {
// worker runs until the keyboard async thread has not exited
this thread::sleep for(chrono::milliseconds(delay distribution(generator)));
ranges::generate(buf, [&]() { return value distribution(generator); });
..................... // do something with the generated numbers

async and futures (8)
vold Keystroke()

d
h

getch(); // waits for keystroke, then exits

int main()

d
vector<int> buf(32);
future<void> fut = async(Keystroke);
thread WorkerThread { Worker(buf, fut) };
WorkerThread.join();

Packaged tasks

It 1s possible to prepare tasks beforehand and invoke them later (or not invoke at all if they
come out to be unnecessary):

packaged task<entry point value return type(list of parameter types)>

task name(entry point function name);

Each packaged task contains a future. To retrieve it:

future<entry point value return type> future name = task name.get future();

To invoke task:

task name(actual parameters_list);

and after that apply the associated future's get() to retrieve the result.

Example: suppose the entry point function (functors and lambdas also allowed) for a task 1is:
bool ReadData(unsigned char *, int);
To create the associated task package:
#include <future> // see https://en.cppreference.com/w/cpp/thread/packaged task.html
packaged task<bool(unsigned char *, int)> read task(ReadData);
... // program continues
if (data needed) {
unsigned char *pBuf = new unsigned char[1024 * 10];
future<bool> read result =read task.get future(); // retrieves the future
read task(pBuf, 10240) // program starts to execute task, if possible then in separate thread
bool success = read result.get(); // blocks until the end of task

h

https://en.cppreference.com/w/cpp/thread/packaged_task.html

Promises (1)

We can store the data created by a thread into a promise and later use future to retrieve it
into another thread:

promise<task return value type> promise name;

promise name.set value(data to store); // can be called only once

Each promise has a future. When we need data stored in promise, retreive it:
future<return value type> future name = promise name.get future();
and then call get().

Example:
void Producer(list<int> *pBuf, int lower, int upper, promise<list<int> *> *pPromise)
{ // see https://en.cppreference.com/w/cpp/thread/promise.html
default random engine generator;
uniform int distribution<int> delay(0, 10000);
uniform int distribution<int>random number(lower, upper);
this thread::sleep for(chrono::milliseconds(delay(generator)));
ranges::generate(*pBuf, [&]() { return random number(generator); });
pBuf->sort();
pPromise ->set value(pBuf); // store the result into promise
// turn attention that the thread entry point function
// does not return any value

h

You can call set value on a specific promise only once!

https://en.cppreference.com/w/cpp/thread/promise.html

Promises (2)
vold Consumer(promise<list<int>*>* pPromise)
{
future<list<int> *> fut = pPromise->get future(); // future associated with promise
list<int> *pRes = fut.get(); // retrieve the result, 1f necesasary, wait
ranges::for each(*pRes, [[(int 1) { cout <<1<<'"; });
cout << endl;

h

int main()
{ // Compare with similar example on slides Mutexes (3) ... Mutexes (5)
// Here we need neither mutexes nor shared memory fields
promise<list<int> *> prom,;
list<int> buf(10);
thread thrl(Producer, &buf, 0, 100, &prom);
thread thr2(Consumer, &prom);
thrl.join();
thr2.join();
return O;

Promises (3)

The promises are very necessary if we need to get results created by detached threads.
Example:

void Producer(list<int> *pBuf, int lower, int upper, promise<void> *pPromise)
d
default random engine generator;
uniform int distribution<int> delay(0, 10000);
uniform int distribution<int>random number(lower, upper);
this thread::sleep for(chrono::milliseconds(delay(generator)));
ranges::generate(*pBuf, [&]() { return random number(generator); });
pBuf->sort();
pPromise ->set value(); // inform that the thread has ended

h

vold Consumer(list<int> *pBuf, promise<void>* pPromise)
{
future<void> fut = pPromise->get future(); // future associated with promise
fut.get(); // wait until the end of producer
ranges::for each(*pRes, [](int 1) { cout <<1<<'"; });
cout << endl;

Promises (4)

int main()
d

promise<void> prom;

list<int> buf(10);

thread thrl(Producer, &buf, 0, 100, &prom);

thrl.detach();

thread thr2(Consumer, &buf, &prom);

thr2.join();

return O;

Latches (1)

C++ v. 20 has some new tools for synchronization of threads. One of them is the /azch:
#include <latch> // see https://en.cppreference.com/w/cpp/thread/latch
void Test () {
vector<int> vl, v2;
latch data ready(2), clear data(1);
// Latch has a counter, its initial value is the parameter of constructor
// ' There 1s no possibility to increase or reset the value of counter later
jthread thrl(Producerl, &v1, 10, 500, &data ready, &clear data); // see the next slide
jthread thr2(Producer2, &v2, 5, 200, &data ready, &clear data);
data ready.wait(); // Wait until the latch counter 1s zero. The threads decrement the
// counter. So, Test() can continue when the both vectors are filled

ranges::sort(vl);

ranges::sort(v2);

vector<int> v(15);

ranges::merge(vl, v2, v.begin());

ranges::for each(v, [](const int& 1) { cout <<i1<<''; });

cout << endl;

clear data.count down(); // decrements the counter, allow the threads to continue
thrl.join();

thr2.jo1in();

https://en.cppreference.com/w/cpp/thread/latch

Latches (2)

void Producerl(vector<int> *pvec, int n, int t, latch *pdata ready, latch *pclear data) {
default random engine generator;
uniform int distribution<int>random number(0, 100);
for (int1=0; 1 <n; 1++) { // fill the vector
pvec->push back(random number(generator));
this thread::sleep for(chrono::milliseconds(t));

b

pdata ready->count down(); // atomically decrements the latch counter
pclear data->wait(); // waits until latch clear data decremented by Test() becomes 0

pvec->clear(); // data is consumed, we can now delete 1t

h

void Producer2(vector<int>* pvec, int n, int t, latch *pdata ready, latch *pclear data) {

default random engine generator;
binomial distribution<int> random number(100);
for (int1=0;1<n; 1++) {
pvec->push back(random number(generator));
this thread::sleep for(chrono::milliseconds(t));
h
pdata ready->count down();
pclear data->wait();
pvec->clear();

Barriers (1)

The barrier 1s more flexible:
#include <barrier> // see https://en.cppreference.com/w/cpp/thread/barrier
void Test ()
{
vector<int> vl, v2;
barrier<> data ready { 3}; // barrier for 3 tasks
// here template barrier has default parameter
jthread thrl(Producerl, &vl1, 10, 500, &data ready); // see the next slide
jthread thr2(Producer2, &v2, 5, 200, &data ready);
data ready.arrive and wait(); // The first task 1s performed: the threads are launched
// Waits until the other 2 tasks implemented by Producerl and Producer2 are performed
// When all the 3 tasks are marked as done, stops waiting
ranges::sort(vl);
ranges::sort(v2);
vector<int> v(15);
ranges::merge(vl, v2, v.begin());
ranges::for each(v, [](const int& 1) { cout <<1<<'"; });
cout << endl;
thrl.join();
thr2.jo1in();

https://en.cppreference.com/w/cpp/thread/barrier

Barriers (2)

void Producerl(vector<int>* pvec, int n, int t, barrier<> *pdata ready) {
default random engine generator;
uniform int distribution<int>random number(0, 100);
for(int1=0;1<n;1++) {
pvec->push back(random number(generator));
this thread::sleep for(chrono::milliseconds(t));
)
pdata ready->arrive and wait();
// marks the task as done (vector is filled), waits until all the tasks are closed

b

void Producer2(vector<int>* pvec, int n, int t, barrier<> *pdata_ready) {
default random engine generator;
binomial distribution<int> random number(100);
for (int1=0;1<n; 1++) {
pvec->push back(random number(generator));
this thread::sleep for(chrono::milliseconds(t));

b

pdata ready->arrive and wait();

b

Barriers (3)

The barrier may have a callback function. It 1s invoked when all the tasks are marked as
done. It is implemented as a functor:
class Msg {

public: void operator() () noexcept { cout << "Ready" << endl; } // noexcept is necessary
s
void Producerl(vector<int>* pvec, int n, int t, barrier<Msg> *pdata ready) {

void Test () {
barrier<Msg> data ready { 3 }; // template parameter is the callback typename

Remark: about keyword noexcept read slide C++ standard exceptions (3) from chapter Cpp
standard functions, course IAX0586

Barriers (4)

When all the tasks are done and the arrive and wait() method returns, the number of tasks
specified 1n the constructor is reset. Thus, a barrier may be used in loops. The following

example presents a producer-consumer problem solution implemented with barriers:
void Test ()

d

barrier<> data ready { 2 };

vector<int> v;

default random engine generator;

for (int1=0;1<35; 1++)

d
jthread* pthrl = new jthread { Producer, &generator, &v, 10, &data ready };
jthread™ pthr2 = new jthread { Consumer, &v, &data ready };
pthr1->join();
pthr2->jo1in();
delete pthrl;
delete pthr2;

Barriers (5)
void Producer(default random_engine *pgen, vector<int>* pvec, int n, barrier<>* pready)
{
uniform int distribution<int>random number(0, 100);
pvec->clear();
for (int 1= 0; 1 <n; 1++)
{
pvec->push_back(random number(*pgen));
this thread::sleep for(chrono::milliseconds(500));
)

pready->arrive and_ wait();

h

void Consumer(vector<int>* pvec, barrier<>* pready)

{

pready->arrive and wait();
ranges::for each(*pvec, [&](const int& 1)

d

cout <<1<<'';
this thread::sleep for(chrono::milliseconds(500));
1)

cout << endl;

b

Semaphores (1)

C++ v. 20 has two types of semaphores:

#include <semaphore> // https://en.cppreference.com/w/cpp/thread/counting_semaphore
int max_value, initial value;

counting semaphore<max_value> seml(initial value);

binary semaphore sem?2(initial value); // max value is 1, initial value may be 0 or 1

Method release() atomically increments the counter, method acquire() decrements it. The
counter cannot be negative and cannot be greater than the max value.

If the counter has become zero, acquire() blocks the thread. If due to call to release() the
counter has a positive value, the blocked thread can continue.

An example about usage of semaphores: suppose we have a server that must process
requests. For processing a new request we have to launch a new thread. However, the
number of threads running concurrently cannot be endless.

To solve the problem we start the program with semaphore in which the initial value is set
to max. Each thread starts with call to acquire(), i.e. with starting the thread we decrement
the counter. If the counter becomes zero, max allowed number of threads are already
running and the new thread must wait. Each thread ends with call to release(), 1.e. with
ending the thread we increment the counter. If the counter was 0, it 1s now 1 and the thread
that was blocked may start to run.

The binary semaphore can replace mutexes. See the example on the next slide.

https://en.cppreference.com/w/cpp/thread/counting_semaphore

Semaphores (2)

vold Producer(vector<int>* pvec, int n, binary semaphore™® pdone) {
default random engine generator;
uniform_int distribution<int> random_number(0, 100);
for int1=0;1<n;1++) {
pvec->push back(random number(generator));
this thread::sleep for(chrono::milliseconds(500));
b

pdone->release();
h
vold Consumer(vector<int>* pvec, binary semaphore® pdone) {
pdone->acquire(); // blocked until the Producer increments the counter
ranges::for each(*pvec, [&](const int& 1) { cout <<1<<''; });
cout << endl;
h
void Test () {
binary semaphore done(0); // mitially in state O
vector<int> v;
jthread thrl(Producer, &v, 10, &done);
jthread thr2(Consumer, &v,&done);
thrl.join();
thr2.join();

Asynchronous I/0 in Windows (1)

C++ I/0 standard classes (see https://en.cppreference.com/w/cpp/io/basic fstream.html are
excellent for disk file operations. For reading from and writing into external devices
connected over COM port or TCP socket, we have to use the Windows mechanismes.

The first step 1s to create the file:
HANDLE handle name =// HANDLE i1s defined in Windows.h
CreateFileA(file name and path, //asregular C string
desired access, / GENERIC READ for files used for reading only
// GENERIC WRITE for files used for writing only
// GENERIC READ | GENERIC WRITE for the both operations
share mode, // outside the course scope, setto 0
security attributes, // outside the course scope, set to NULL
creation disposition, / CREATE ALWAYS and if already exists, at first destroy it
// CREATE NEW and if already exists, the operation fails
// OPEN_EXISTING and if not found, the operation fails
// OPEN_ ALWAYS and if not found creates a new one
// TRUNCATE EXISTING (destroy the contents) and if not found,
// the operations fails
flags and attributes, // in our course FILE FLAG OVERLAPPED (discussed later)
template file handle); // outside the course scope, set to NULL

The complete specification of function CreateFileA 1s on website
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-createfilea is

https://en.cppreference.com/w/cpp/io/basic_fstream.html
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-createfilea
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-createfilea
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-createfilea
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-createfilea
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-createfilea
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-createfilea
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-createfilea

Asynchronous I/O in Windows (2)

If the function fails, the return value 1s INVALID FILE HANDLE. To know the reason, call

function GetLastError:
unsigned long error code = GetLastError();

The error codes are on https://docs.microsoft.com/en-us/windows/desktop/Debug/system-
error-codes.

If you do need the file any more, close it:
CloseHandle(handle name);

Example:
HANDLE hFile = CreateFileA("FileExample.bin", GENERIC READ | GENERIC WRITE,

0, NULL, CREATE ALWAYS, FILE FLAG OVERLAPPED, NULL);
if (hFile == INVALID HANDLE VALUE)
cout << "File not created, error " << GetLastError() << endl;
// Important: you should always check was a file operation successful or not

CloseHandle(hFile);

https://docs.microsoft.com/en-us/windows/desktop/Debug/system-error-codes
https://docs.microsoft.com/en-us/windows/desktop/Debug/system-error-codes
https://docs.microsoft.com/en-us/windows/desktop/Debug/system-error-codes
https://docs.microsoft.com/en-us/windows/desktop/Debug/system-error-codes
https://docs.microsoft.com/en-us/windows/desktop/Debug/system-error-codes
https://docs.microsoft.com/en-us/windows/desktop/Debug/system-error-codes
https://docs.microsoft.com/en-us/windows/desktop/Debug/system-error-codes

Asynchronous I/0 in Windows (3)

To read from file synchronously:
int result name = ReadFile(handle name, pointer to buffer that receives read data,
max number of bytes to read, pointer to variable for number of bytes actually read,
NULL);
If the reading failed, the return value is FALSE and GetLastError() returns the error code.
The actual number of read bytes may be less than the number of needed bytes.
Example:
unsigned long nBytesToRead = 1024, nReadBytes = 0;
unsigned char *pBuffer = new unsigned char[nBytesToRead];
HANDLE hFile;
int Result = ReadFile(hFile, pBuffer, nBytesToRead, &nReadBytes, NULL);
if (!Result)
cout << "Data not read, error " << GetLastError() << endl;
else if (nReadBytes != nBytesToRead)
cout << "Only " << nReadBytes << " bytes instead of " << nBytesToRead << " was read"
<< endl;
else
cout << nReadBytes << " bytes was read" << endl;

The complete specification of function ReadFile 1s on website
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-readfile

https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-readfile
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-readfile
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-readfile
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-readfile
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-readfile
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-readfile
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-readfile

Asynchronous I/0 in Windows (4)

To write into file synchronously:

int result name = WriteFile(handle name, pointer to buffer containing data,
number of bytes to write, pointer to variable for number of bytes actually written,
NULL);

If the writing failed, the return value 1s 0 and GetLastError() returns the error code. The
actual number of written bytes may be less than the number of bytes we wanted to write.
Example:

unsigned long nBytesToWrite = 1024, nWrittenBytes = 0;

unsigned char *pBuffer = new unsigned char[nBytesToWrite];

HANDLE hFile;
int Result = WriteFile(hFile, pBuffer, nBytesToWrite, &nWrittenBytes, NULL);
if (!Result)
cout << "Data not written, error " << GetLastError() << endl;
else if (nBytesToWrite != nWrittenBytes)
cout << "Only " << nWrittenBytes << " bytes instead of " << nBytesToWrite
<< " was written" << endl;
else
cout << nWrittenBytes << " bytes was written" << endI;

The complete specification of function WriteFile is on website
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-writefile

https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-writefile
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-writefile
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-writefile
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-writefile
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-writefile
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-writefile
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-writefile

Asynchronous I/0O in Windows (5)

The synchronous I/O operations with disk files in most cases do not lead to problems. For
Windows, however, any data that is not in the memory region set for the current application
is considered to be in a file. For example, if our application controls an external device
connected to computer through serial port COM1, then we need to read data from and write
data to file \\.\COM]. This external device may be temporarily or perpetually (is switched
off?) not able to send data to us or retrieve data that we want to send to it. In that case the
synchronous I/O operations block their thread and it 1s impossible to unblock it — in other
words the application hangs.

For asynchronous I/0 we need Windows events:
HANDLE handle name = CreateEventA (
attributes, // outside the course scope, set to NULL
reset mode, // manual reset TRUE, auto reset FALSE
mitial state, // not signaled FALSE, signaled TRUE
name); // outside the course scope, set to NULL
Other standard functions for events:
SetEvent(handle name); // state to signaled
ResetEvent(handle name); // state to non-signaled
CloseHandle(handle name);
See more on website:
https://docs.microsoft.com/en-us/windows/desktop/Sync/synchronization-functions#event-
functions

https://docs.microsoft.com/en-us/windows/desktop/Sync/synchronization-functions#event-functions
https://docs.microsoft.com/en-us/windows/desktop/Sync/synchronization-functions#event-functions
https://docs.microsoft.com/en-us/windows/desktop/Sync/synchronization-functions#event-functions
https://docs.microsoft.com/en-us/windows/desktop/Sync/synchronization-functions#event-functions
https://docs.microsoft.com/en-us/windows/desktop/Sync/synchronization-functions#event-functions
https://docs.microsoft.com/en-us/windows/desktop/Sync/synchronization-functions#event-functions
https://docs.microsoft.com/en-us/windows/desktop/Sync/synchronization-functions#event-functions

Asynchronous I/0O in Windows (6)

The events are to block and unblock a thread:

int result name = WaitForSingleObject(event handle name, timeout in ms);

If the event is non-signaled, WaitForSingleObject function does not return and thus blocks
its thread. To unblock, another thread or an asynchronous I/O operation must set the event

to signaled. The function returns also when the timeout interval elapses. If the timeout 1s set
to INFINITE, time 1s not measured.

The return value may be:

» WAIT OBJECT 0 — the event was set to signaled

 WAIT TIMEOUT — the event is still non-signaled, but time has elapsed
 WAIT FAILED — system problems

If the event 1s defined as auto-reset, WaitForSingleObject function also turns it back to not
signaled. If the event 1s defined as manual reset, the user has to apply function ResetEvent.

The other blocking / unblocking function is
int result name = WaitForMultipleObjects(number of handles,

pointer to array of handles, all or one, timeout in ms);
It checks the state of several events stored into array. If the third parameter all or one is
TRUE, function WaitForMultipleObjects returns only when all the specified events are
signaled. If all or onei1s FALSE, it returns when at least one of them is signaled. If just the
array's i-th event has become signaled, the return value i1s WAIT OBJECT 0 + i. If several

or all the events are signaled, i i1s the smallest index from the signaled events subset.

Asynchronous I/0 in Windows (7)

For asynchronous I/O we need a struct of type OVERLAPPED:
OVERLAPPED Overlapped;
memset(&Overlapped, 0, sizeof Overlapped); // fill with zeroes

Next we have to create an initially non-signaled event and store its handle in Overlapped:
Overlapped.hEvent = CreateEventA(NULL, FALSE, FALSE, NULL);

We need at least one more non-signaled event that 1s triggered from another thread. For
example, let us suppose that this event with handle ZExitEvent will be set to signaled when
the user has decided to exit the application.

To finish the preparations create an array of events:
HANDLE hEvents[] = { Overlapped.hEvent, hExitEvent };

In calls to ReadFile and WriteFile functions the last parameter must be the pointer to
Overlapped, for example:

unsigned long nBytesToRead = 1024, nReadBytes = 0;

unsigned char *pBuffer = new unsigned char[nBytesToRead];

HANDLE hFile;

int Result = ReadFile(hFile, pBuffer, nBytesToRead, &nReadBytes, &Overlapped);

If the output value is not FALSE, the I/O operation succeeded without any delays and we
may check does the number of read or written bytes match the number of bytes we wanted
to read or write (see slides Asynchronous I/O in Windows (3) and (4)).

Asynchronous I/0 in Windows (8)

If the output value 1s FALSE, we must call GetLastError():
int error = GetLastError();

If the error code 1s ERROR 10 PENDING, the I/0 operation failed now but may succeed
later and we have to wait:
int WaitResult = WaitForMultipleObjects(2, hEvents, FALSE, timeout);

The waiting stops when:

* At last the I/O operation was completed, WaitResult 1s WAIT OBJECT 0.

* The user wants to exit the application and triggers hExitEvent, WaitResult 1s
WAIT OBJECT 0 + 1. Thus the application is always under the user's control.

* Timeout occurred (only if timeout != INFINITE), WaitResult 1s WAIT TIMEOUT.
* Some system errors, WaitResult has other values

If the I/O operation was completed, we may get the number of bytes that was actually read
or written:

GetOverlappedResult(hFile, &Overlapped, &nReadBytes, FALSE);

or

GetOverlappedResult(hFile, &Overlapped, &nWrittenBytes, FALSE);

If the error code was not /O ERROR PENDING, the /O operation has totally failed.
See also WindowsAsynclO.cpp from IAX0587 Examples.zip.

Dynamic link libraries (1)

Large application consist of more that one file: *.exe + several *.dll. Why the DLLs are
necessary:

1.
2.

W

Very large executive files can be divided into smaller modules.

In development: each programmer (or group of programmers or company) can link
his part of code (a software module) as a DLL and thus work without disturbing the
other participants.

In maintenance: the developer changes one of the DLLs and sends it to the customer.
Industrial software development: one DLLs may be used in many different
applications.

There are two options for connecting *.exe and *.dll:

.

2.

Implicit linking: the DLLs are connected to the application when Windows is loading
the application into memory.

Explicit linking: a DLL is connected only when the application needs and calls the
LoadLibrary() function.

Important for Visual Studio users: Project properties =»C/C++ =» Code generation =
Runtime library has two options: multithreaded /MT (runtime support libraries are linked
to the application, the total amount of *.exe is large), or multithreaded DLL /MD
(runtime support libraries are applied as DLLs, the amount of *.exe is smaller but when
the customer's PC does not have all the necessary libraries, the application crashes).

Dynamic

link libraries (2)

AS0410PlantLoggerDIl Property Page: { X
Configuration: | All Configurations | Platform: | Active(Win32) Configuration Manager...
4 Configuration Properties Enable String Peoling
General Enable Minimal Rebuild Mo (/Gm-)
Debugging Enable C++ Exceptions Yes (/EHsc)
VC++ Directories Srnaller Type Check Mo
4 L/C+s Basic Runtime Checks <different options=>
Optimization Struct Member Alignment Multi-threaded (/MT)
Preprocessor

Code Generation

Language
Precompiled
Output Files
Browse Information
Advanced
All Options
Command Line
inker
Manifest Tool
XML Document Generator

Build Events
Custom Build Step

[

[

[

[Browse Information
[

[

- Code Analysis

Security Check

Contrel Flow Guard

Enable Function-Level Linking
Enable Parallel Code Generation
Enable Enhanced Instruction Set
Flzating Point Model

Enable Floating Point Exceptions
eate Hotpatchable Image

Sp

Multi-threaded Debug (/MTd)
Multi-threaded DLL (/MD)
Multi-threaded Debug DLL (/MDd)

Mot Set
Precise (/fp:precise)

Dizabled

Runtime Library
Specify runtime library for linking.

(MT, /MTd, /M0, /MDd)

0K

Cancel

Apply

Dynamic link libraries (3)
To start with DLL project inform the wizard that your target 1s C++ Dynamic-link Library.

| pod

Create a new project

Search for templates (Alt+5) Clear all

Recent project templates S Windows

Windows Desktop Wizard

] Empty Project Create your own Windows app using a wizard.

Cs++ Wind ows Desktop Console Library
Bl Console App

Dynarmic-Link Library (DLL)

Dynamic-Link Library (DLL) Build a .dll that can be shared between multiple running Windows apps.

) Cs++ Windows Library
i1 Windows Desktop Wizard

Static Library

Build a .lib that can be packaged inside other Windows executables.
Cs++ Windows Library

Shared Items Project

A Shared lterns project is used for sharing files between multiple projects.
Cs++ Windows Android i0s Linuo Desktop Console
Library WP Games hobile

Makefile Project

Ering your own build system to compile C++.

C++ Windows Desktop Console Library

C++ Windows Library

Dynamic link libraries (4)
Suppose that our project name 1s Example. The wizard creates several files, among them
file dlimain.cpp (analyzed on the next slide). First create a *.cpp file and a * 4 file (by
tradition their names must match the DLL name, so in our case Example.cpp and
Example.h). In the header file write code:
#ifdef EXAMPLE EXPORTS
#define LIBSPEC declspec(dllexport)
#else
#define LIBSPEC declspec(dllimport)
#endif
Constant EXAMPLE EXPORTS (generally dllname EXPORTYS) is created by wizard and
used when the DLL code is compiled. It is not created for applications that use DLLs.
All the prototypes and definitions of functions that the DLL exports (i.e. they will be called
by applications using this DLL) must start with LIBSPEC, for example in Example.h:
LIBSPEC int Sum(int, int);
in Example.cpp:
#include "pch.h" // 1f the wizard created this file
#include "Example.h"
LIBSPEC int Sum(int x1, int x2)

d
)

return x1 + x2;

Dynamic link libraries (5)

The wizard-created function D/IMain() from dlimain.cpp is the entry point function.
#include "pch.h"
BOOLAPIENTRY DIIMain(HMODULE hModule, DWORD ul reason for call,
LPVOID IpReserved)
{// DlIMain() is called automatically each time when the process or one of its threads
// attaches or detaches the DLL:
//'1. In case of implicit linking when the process starts and terminates
// 2. In case of explicit linking when the application calls LoadLibrary() and
//" FreeLibrary() functions
switch (ul reason for call)
d
case DLL. PROCESS ATTACH:
case DLL THREAD ATTACH:
// TODO: add code for initialization operations
break;
case DLL. THREAD DETACH:
case DLL PROCESS DETACH:
// TODO: add code for clean-up operations
break;

h
return TRUE;

Dynamic link libraries (6)

Visual Studio builds two files: Example.dll and Example.lib. If the application using our
DLL applies explicit linking, it needs only Example.dll. In case of implicit linking it needs
3 files: Example.dll, Example.lib and Example.h.

In application with implicit linking calls to functions exported by DLL do not differ from
calls to standard functions. The prototypes during compiling are read from Example.h that
must be copied into the folder where the other source code files are located. However, to
link the application we need the object modules (*.0bj) of DLL functions. To play a trick on
linker we need Example.lib that contains stubs — short empty functions replacing the actual
DLL functions. When the application is running, instead of stubs the functions from DLL are
called. You may copy the *./ib into folder containing source codes.

The easest way 1s to put DLL into the folder where the *.exe 1s located.

In case of explicit linking the application must load the DLL:
HMODULE handle name LoadLibraryA(dll filename as C string);

Zero handle value means that the DLL was not loaded. To know the reason call
GetLastError(). To detach the DLL:
FreeLibrary(handle name);

To call a function we need pointer to it:
FARPROC pointer name = GetProcAddress(handle name, function name as C string);

Zero result value means that the function was not found. To know the reason call
GetLastError().

Dynamic link libraries (7)

Explicit linking example:
#include "Windows.h"
HMODULE hDLL = LoadLibraryA("DLLExample.dIl");
if ({hDLL)
d
cout << "DLLExample.dll not found, error " << GetLastError() << endl;
return;
;
FARPROC pSum = GetProcAddress(hDLL, "Sum");
if (pSum == NULL)
d
FreeLibrary(hDLL);
cout << "Function Sum() not found, error " << GetLastError() << endl;
return;
;
int result = ((int(*)(int, int))pSum)(5, 6); // cast pointer to actual type
FreeLibrary(hDLL);
return;

Dynamic link libraries (8)

Turn attention that C++ compiler performs so called name mangling. For example, a
function with prototype

unsigned char *Run(unsigned char *);

in DLL 1s named as ?Run(@@YAPEAEPEAE@Z. To see the new names you can analyse
the DLL with Dependency Walker standard utility.

The C compiler keeps the original names. To force the C++ compilers to follow C naming
conventions use extern "C" linking:

extern "C"

d
h

extern ""C"

d
LIBSPEC int Sum(int x1, int x2)

d

h
h

LIBSPEC int Sum(int, int);

return x1 + x2;

	Slide 1: Multithreaded applications (1)
	Slide 2: Multithreaded applications (2)
	Slide 3: Threads (1)
	Slide 4: Threads (2)
	Slide 5: Threads (3)
	Slide 6: Threads (4)
	Slide 7: Threads (5)
	Slide 8: Threads (6)
	Slide 9: Threads (7)
	Slide 10: Class this_thread
	Slide 11: Exceptions in threads (1)
	Slide 12: Exceptions in threads (2)
	Slide 13: Exceptions in threads (3)
	Slide 14: Race conditions (1)
	Slide 15: Race conditions (2)
	Slide 16: Race conditions (3)
	Slide 17: Mutexes (1)
	Slide 18: Mutexes (2)
	Slide 19: Mutexes (3)
	Slide 20: Mutexes (4)
	Slide 21: Mutexes (5)
	Slide 22: Mutexes (6)
	Slide 23: Mutexes (7)
	Slide 24: Mutexes (8)
	Slide 25: Mutexes (9)
	Slide 26: Mutexes (10)
	Slide 27: Call a function just once (1)
	Slide 28: Call a function just once (2)
	Slide 29: Call a function just once (3)
	Slide 30: Atomic variables (1)
	Slide 31: Atomic variables (2)
	Slide 32: Atomic variables (3)
	Slide 33: Thread interrupt (1)
	Slide 34: Thread interrupt (2)
	Slide 35: Thread interrupt (3)
	Slide 36: Thread interrupt (4)
	Slide 37: Condition variables (1)
	Slide 38: Condition variables (2)
	Slide 39: Condition variables (3)
	Slide 40: Condition variables (4)
	Slide 41: Condition variables (5)
	Slide 42: Condition variables (6)
	Slide 43: Condition variables (7)
	Slide 44: Condition variables (8)
	Slide 45: Condition variables (9)
	Slide 46: Condition variables (10)
	Slide 47: Condition variables (11)
	Slide 48: Condition variables (12)
	Slide 49: Condition variables (13)
	Slide 50: Condition variables (14)
	Slide 51: async and futures (1)
	Slide 52: async and futures (2)
	Slide 53: async and futures (3)
	Slide 54: async and futures (4)
	Slide 55: async and futures (5)
	Slide 56: async and futures (6)
	Slide 57: async and futures (7)
	Slide 58: async and futures (8)
	Slide 59: Packaged tasks
	Slide 60: Promises (1)
	Slide 61: Promises (2)
	Slide 62: Promises (3)
	Slide 63: Promises (4)
	Slide 64: Latches (1)
	Slide 65: Latches (2)
	Slide 66: Barriers (1)
	Slide 67: Barriers (2)
	Slide 68: Barriers (3)
	Slide 69: Barriers (4)
	Slide 70: Barriers (5)
	Slide 71: Semaphores (1)
	Slide 72: Semaphores (2)
	Slide 73: Asynchronous I/O in Windows (1)
	Slide 74: Asynchronous I/O in Windows (2)
	Slide 75: Asynchronous I/O in Windows (3)
	Slide 76: Asynchronous I/O in Windows (4)
	Slide 77: Asynchronous I/O in Windows (5)
	Slide 78: Asynchronous I/O in Windows (6)
	Slide 79: Asynchronous I/O in Windows (7)
	Slide 80: Asynchronous I/O in Windows (8)
	Slide 81: Dynamic link libraries (1)
	Slide 82: Dynamic link libraries (2)
	Slide 83: Dynamic link libraries (3) To start with DLL project inform the wizard that your target is C++ Dynamic-link Library.
	Slide 84: Dynamic link libraries (4)
	Slide 85: Dynamic link libraries (5)
	Slide 86: Dynamic link libraries (6)
	Slide 87: Dynamic link libraries (7)
	Slide 88: Dynamic link libraries (8)

