
Multithreaded applications (1)

A thread of execution is the smallest sequence of programmed instructions that an

operating system can manage independently.

Multitasking: several processes run concurrently (or seem to run concurrently).

Between processes the computer resources (like memory, ports, etc.) are not shared,

For example each process has its own address space.

Multithreading: several threads run concurrently (or seem to run concurrently) within

one process. Several threads can share the same resource, for example a section of

memory.

On single processor systems the processor switches from one thread to another. When the

time slice allocated for a thread has expired, the processor starts to execute instructions

from another thread. As the time slices are short, the user percieves that the threads

are running on the same time. On multiprocessor (multicore) systems each processor may

run a particular thread, i.e. the threads are actually running on the same time.

A thread may be in three states:

When a thread needs a resource currently occupied by another thread or waits for data from

external sources, it is in the blocked state. The other threads continue to work.

Multithreaded applications (2)
When you must create threads:

1. You have some subtasks that take a large amount of time (searching, printing, etc.).

2. You need to communicate with external data sources (web, devices connected to

your computer, etc.) which may send data to you or read data you want to send them

at occasional moments. It may even happen that they do not want to communicate

with you. A single-thread application waiting for data from external source freezes and

becomes uncontrolable.

3. You have subtasks with different priority.

4. You have user interface which must be responsive - i.e. react to the user actions (for

example mouse clicks) immediately.

main() is in the primary (or main) thread. The main thread may initialize and launch

another threads, those in turn can also have their own child threads and so on.

Each thread must have its thread entry point function which corresponds to the main()

of the primary thread.

Each thread has its own stack for local variables. The global variables are common to

all the threads.

Threads (1)

#include <thread> // See https://en.cppreference.com/w/cpp/thread/thread.html

using namespace std;

To declare a thread and launch it, write:

thread thread_object_name(entry_point_function_name,

list_of_input_parameters);

The entry point function may have any set of input parameters, but no return value.

Example: suppose we have function

void PrintTextFile(string FileName);

To organize the printing in background write

thread BackgroundPrinting(PrintTextFile, string("c:\\temp\\data.txt"));

The thread stops when its entry point function quits. The question is what happens if the

thread object is destroyed (automatically as a local variable or by delete operator) before

the end of entry point function. For example:

int main()

{

 thread BackgroundPrinting(PrintTextFile, string("c:\\temp\\data.txt"));

……………………………

 return 0; // still printing, but BackgroundPrinting thread object goes out of scope

}

http://www.cplusplus.com/reference/thread/

Threads (2)
There are two solutions:

void fun()

{

 thread BackgroundPrinting(PrintTextFile, string("c:\\temp\\data.txt"));

……………………………

 BackgroundPrinting.join(); // main thread waits until the PrintTextFile returns

 return;

}

void fun()

{

 thread BackgroundPrinting(PrintTextFile, string("c:\\temp\\data.txt"));

 BackgroundPrinting.detach(); // we get a thread that runs independently.

 ……………………………

 return;

}

If a thread is detached (called also as daemon thread), it just keeps running in the

background until the end of entry point function. Destroying of the thread object does not

stop the detached thread. However, when the process dies (i.e. the main() returns), it kills

all the running detached threads.

If a thread is not detached and we destroy the thread object without applying join, we'll

get a run-time error.

Threads (3)

If the entry point function is a member of a class:

thread thread_object_name(&class_name::entry_point_function_name,

pointer_to_object, list_of_input_parameters);

Example: suppose we have class

class Printers

{

……………………………….

PrintTextFile(string FileName);

…………………………………

};

and object:

Printers *pHP_LaserJet = new Printers;

then to create and launch the background printing write:

thread BackgroundPrinting(&Printers::PrintTextFile, pHP_laserJet,

string("c:\\temp\\data.txt"));

If the function launching thread and the entry point function are members of the same

class and belong to the same object, pointer_to_object is of course pointer this.

Threads (4)

The entry point may be specified by lambda expressions:

thread thread_object_name(lambda_expression);

Example:

const char *pTextFile = "c:\\temp\\data.txt";

thread BackgroundPrinting([&]() { PrintTextFile(pTextFile); });

Also, it is possible to write a new class and apply functors. Example:

class PrintThread

{

 private: const char *pFile;

 public: PrintThread(const char *p) : pFile(p) { } // parameter is specified in constructor

 operator() () const { PrintTextFile(pFile); }

};

PrintThread pt("c:\\temp\\data.txt"); // create functor object

thread BackgroundPrinting(pt); // functor object presents the entry point function

or

thread BackgroundPrinting(PrintThread("c:\\temp\\data.txt")); // create nameless functor

or with uniform initialization

thread BackgroundPrinting { PrintThread("c:\\temp\\data.txt") }; // here we create object

// BackgroundPrinting and initialize it with nameless functor

Threads (5)

Alternative:

class PrintThread

{

 public: // no constructor, just operator()

 operator() (const char *p) const { PrintTextFile(p); }

};

thread BackgroundPrinting(PrintThread(), "c:\\temp\\data.txt"); // create nameless object

or

PrintThread pt;

thread BackgroundPrinting(pt, "c:\\temp\\data.txt"); // use previously defined object

Threads (6)
Let us have a simple thread:

void Test () {

 int n = 10;

 thread Worker([&]() { for (int i = 0; i < n; i++)

{

 this_thread::sleep_for(chrono::seconds(1));

 cout << i << endl;

 } // thread body is a lambda

 cout << "Ready"; });

 ……………………………… // do something

 return; // here the Worker object is destroyed

}

If the thread object is destroyed when the thread is still running, the program will creash. The

solution is to use method join:

Worker.join(); // blocks function Test() until the end of thread

The problem here is that function Test may have several return amd throw points, so we need

to call join in many places. If, in addition, we have more than one thread, we may get very

complicated and indistinct code.

If we instead of class thread apply C++ v. 20 class jthread, method join is called automatically

by the destructor of this class and the code presented on this slide will work.

Threads (7)
void Test () {

 ……………………… // Do something

 jthread Worker(/* entry point function and input parameters */) ;

 ……………………… // Do something

 if (/* some condition */) {

 return; // no need to call join

 try {

 ……………………… // Do something

 }

 catch (exception) {

 return; // no need to call join

 }

 Worker.join();

 ……………………… // the thread has finished, analyse the results

}

jthread provides the same interface as thread so it is possible in old code simply add character j

to classname thread. Header file <thread> presents the both classes.

Class this_thread

Class this_thread has several static methods allowing the current thread to control itself.

this_thread::sleep_for(duration);

blocks the current thread for the specified time interval. Example:

this_thread::sleep_for(chrono::seconds(5));

this_thread::sleep_until(time_point);

blocks the current thread until the specified moment. Example:

time_t now_t = chrono::system_clock::to_time_t(chrono::system_clock::now());

struct tm now_tm;

localtime_s(&now_tm, &now_t);

now_tm.tm_sec = now_tm.tm_min = 0;

now_tm.tm_hour++;

this_thread::sleep_until(chrono::system_clock::from_time_t(mktime(&now_tm)));

 // for example, if time is now 14:05:00 then the thread resumes its work at 15:00:00

Exceptions in threads (1)
Suppose that our main thread has launched another thread. An exception has occurred in

this thread but for some reasons the handling of it in the launched thread itself is not

possible and should be transferred to the main thread. For solution the problem we need:

• An object of class exception_ptr, used for storing the exception. This object is actually a

smart pointer. It must be accessible for the launched thread as well as for the main

thread.

• Function current_exception() creating from ordinary exception an object of class

exception_ptr (actually storing the exception).

• Function rethrow_exception() allowing to transform the object of class exception_ptr

back to ordinary exception.

See also https://en.cppreference.com/w/cpp/error/exception_ptr.html

https://en.cppreference.com/w/cpp/error/exception_ptr.html

Exceptions in threads (2)

int main()

{

exception_ptr Ex_ptr = nullptr; // smart pointer Ex_ptr will store the exception

……………………………….

 thread Task(TaskMain, &Ex_ptr, …….);

 Task.join(); // wait for end of thread Task

 try

 {

 if (Ex_ptr)

 { // was there an exception in the thread?

 rethrow_exception(Ex_ptr); // transform back to normal exception

 }

 }

 catch (const exception& e)

 { // process the restored exception

 cout << e.what() << endl;

 }

 return 0;

}

Exceptions in threads (3)
In thread:

void TaskMain(exception_ptr *pEx_ptr, ……)

{

 ……………………..

 try

 {

 …………………

 }

 catch (exception)

 {

 *pEx_ptr = current_exception(); // instead of handling store the exception

 return;

 }

 ………………………………….

}

Race conditions (1)

Mostly, threads share some resources. Suppose we have two threads and they share an

integer static int x = 1; One of them increments and the other decrements it. Those

operations are performed in 3 steps: retrieving the value from memory, incrementing or

decrementing and sending back into the memory. As the thread scheduling mechanism can

swap between threads at any time, the final result is unpredictable:

Thread 1 Thread 2

Retrieve x (value 1)

Increment x

Store x (value 2)

Retrieve x (value 2)

Decrement x

Store x (value 1)

Thread 1 Thread 2

Retrieve x (value 1)

Decrement

Store x (value 0)

Retrieve x (value 0)

Increment

Store x (value 1)

Thread 1 Thread 2

Retrieve x (value 1)

Retrieve x (value 1)

Decrement

Store x (value 0)

Increment

Store x (value 2)

Thread 1 Thead 2

Retrieve x (value 1)

Increment

Retrieve x (value 1)

Decrement

Store (value 2)

Store (value 0)

Race conditions (2)

From https://support.microsoft.com/en-us/help/317723/description-of-race-conditions-

and-deadlocks:

A race condition occurs when two threads access a shared variable at the same time. The

first thread reads the variable, and the second thread reads the same value from the

variable. Then the first thread and second thread perform their operations on the value, and

they race to see which thread can write the value last to the shared variable. The value of

the thread that writes its value last is preserved, because the thread is writing over the

value that the previous thread wrote.

For us the thread execution is nondeterministic, therefore we cannot control the time or

order of execution. It may happen that the "race" does not occur at all (tables 1 and 2). But

if it does occur, the "winner" may be any of the threads and therefore the final result is

unpredictable (tables 3 and 4).

The solution is to lock the shared memory. It means that when one of the threads is

operating with the shared memory field, the other thread(s) must stop and wait for the first

one to release the shared memory.

https://support.microsoft.com/en-us/help/317723/description-of-race-conditions-and-deadlocks
https://support.microsoft.com/en-us/help/317723/description-of-race-conditions-and-deadlocks
https://support.microsoft.com/en-us/help/317723/description-of-race-conditions-and-deadlocks
https://support.microsoft.com/en-us/help/317723/description-of-race-conditions-and-deadlocks
https://support.microsoft.com/en-us/help/317723/description-of-race-conditions-and-deadlocks
https://support.microsoft.com/en-us/help/317723/description-of-race-conditions-and-deadlocks
https://support.microsoft.com/en-us/help/317723/description-of-race-conditions-and-deadlocks
https://support.microsoft.com/en-us/help/317723/description-of-race-conditions-and-deadlocks
https://support.microsoft.com/en-us/help/317723/description-of-race-conditions-and-deadlocks
https://support.microsoft.com/en-us/help/317723/description-of-race-conditions-and-deadlocks
https://support.microsoft.com/en-us/help/317723/description-of-race-conditions-and-deadlocks
https://support.microsoft.com/en-us/help/317723/description-of-race-conditions-and-deadlocks
https://support.microsoft.com/en-us/help/317723/description-of-race-conditions-and-deadlocks

Race conditions (3)

More generally, we have to synchronize the threads:

• When one of the threads owns a resource (array, linked list, disk file, COM port, etc.),

the other threads can access this resource for reading only. The have no right to change

anything on that resource.

• If a thread needs a resource owned by another thread for writing (i.e. changing data), it

must wait until the resource is released.

• When the thread owning a resource does not need it more, it has to release the resource

and signal about it to the other threads.

Key problems: communication between threads, locking resources.

The code must be thread-safe.

Mutexes (1)

Let us have two threads:

1. The producer thread retrieves data from an external source or generates data in some

other way. If a package of data is ready, it stores it in a buffer. Time interval needed to

create a package is occasional.

2. The consumer thread reads the data from the buffer it shares with the producer and

processes it and / or views on the screen. Time interval needed to process a package

and view it is also occasional.

It may happen that the consumer starts to process data when the producer has not yet

finished the storing of new package. It may also happen that the producer starts to store the

new package when the consumer has not yet finished the processing of previous package.

Consequently, to synchronize the work of threads we need a mechanism guaranteeing that

1. When the producer is accessing the shared buffer, the consumer has no right to access

it. If the consumer tries to access the buffer, it will be blocked until the producer

releases the buffer.

2. When the consumer is accessing the shared buffer, the producer has no right to access

it. If the producer tries to access the buffer, it will be blocked until the consumer

releases the buffer.

In C++ this mechanism is implemented by mutexes (mutual exclusion classes).

Mutexes (2)

#include <mutex> // see https://en.cppreference.com/w/cpp/thread/mutex.html

mutex mx; // must be accessible in both threads

// Producer:

mx.lock();

// code in which buffer is accessed

mx.unlock();

// Consumer:

mx.lock();

// code in which buffer is accessed

mx.unlock();

Actually, we do not lock the shared memory field but mark the section of code in which

the shared memory is accessed.

If the threads need the shared memory only for reading, mutexes are unnecessary.

https://en.cppreference.com/w/cpp/thread/mutex.html

Mutexes (3)

class Producer

{ // task: create random data on an occasional moment

public:

 vector<int> *pBuf; // shared resource

 mutex *pMx;

 Producer(vector<int> *pv, mutex *pm) : pBuf(pv), pMx(pm) { } // constructor

 void operator() ()

 {

distr

 uniform_int_distribution<int> value_distribution(0, 100);

 pMx->lock();

 this_thread::sleep_for(chrono::milliseconds(delay_distribution(generator)));

 // pause, random duration

 ranges::generate(*pBuf, [&]() { return value_distribution(generator);});

 // fill the vector with random numbers

 pMx->unlock();

 }

};

Mutexes (4)

class Consumer

{ // task: print the created data

 public:

 vector<int> *pBuf; // shared resource

 mutex *pMx;

 Consumer(vector<int> *pv, mutex *pm) : pBuf(pv), pMx(pm) { } // constructor

 void operator() ()

 {

 this_thread::sleep_for(chrono::milliseconds(2500)); // see comment on the next slide

 pMx->lock();

 for_each(pBuf->begin(), pBuf->end(), [](int i) { cout << i << ' '; });

 cout << endl;

 pMx->unlock();

 }

};

Mutexes (5)

int main()

{

 mutex mx;

 vector<int> buf(32);

 thread ProducerThread { Producer(&buf, &mx) }; // uniform initialization, see slide

 // STL Threads (4)

 thread ConsumerThread { Consumer(&buf, &mx) };

 // see slide Threads (4)

 ProducerThread.join();

 ConsumerThread.join();

 return 0;

}

Comment:

The producer starts first but we cannot be sure that it locks the mutex before the consumer

applies the locking. If the consumer is faster, it prints zeroes and then allows the producer

to work. Therefore we have blocked the consumer for a while. This is not a good way to

solve the problem. Later we'll see how to solve it with conditional variables.

Mutexes (6)

Method try_lock works in the following way:

• If the mutex is not locked by another thread, it will be locked

• If the mutex is locked by another thread, it returns immediately with false.

Usage example:

while (true)

{

if (mx.try_lock())

{

................................... // critical section operations

mx.unlock();

break;

}

else

{

.................................... // do something else, then try once more to enter

}

}

Mutexes (7)
If a thread is in critical section and hangs, the mutex is never unlocked and the other

threads cannot continue. The solution is timed_mutex that has methods try_lock_for and

try_lock_until:

• If the mutex is not locked by another thread, it will be locked immediately.

• If the mutex is locked by another thread, it tries to lock it until the specified time

interval has elapsed or the specified time point reached. If the locking is still

impossible, false is returned.

Usage example:

timed_mutex tmx; // see https://en.cppreference.com/w/cpp/thread/timed_mutex.html

chrono::milliseconds timeout(1000); // timeout duration

if (tmx.try_lock_for(timeout))

{ // successful locking

................................... // critical section operations

tmx.unlock();

}

else // 1000ms has elapsed but locking is still not possible

{

cout << " Problems: the other thread has frozen" << endl;

}

Timed mutexes can operate as ordinary mutexes, i.e. they support also methods lock() and

try_lock().

https://en.cppreference.com/w/cpp/thread/timed_mutex.html

Mutexes (8)

To simplify locking and unlocking with mutexes use class lock_guard:

lock_guard<mutex> lock_guard_name(associated_mutex_name);

Example:

#include <mutex> // see https://en.cppreference.com/w/cpp/thread/lock_guard.html

mutex mx;

lock_guard<mutex> lock(mx); // constructor for object lock of class lock_guard

The lock_guard has only two methods: contructor and destructor.

• When the constructor is called, the lock() method of the associated mutex is also called.

• When the destructor is applied, the unlock() method of the associated mutex is also

called.

With manual locking, you have to ensure that the mutex is unlocked correctly on every

exit path from the region where you need the mutex locked, including when the region is

exited due to an exception. Having a local lock_guard object (i.e. auto memory class) it is

not a problem: even if an exception is thrown, the destructor is applied and the mutex

released. The mutex itself may be a global variable or input parameter of the thread entry

point function.

https://en.cppreference.com/w/cpp/thread/lock_guard.html

Mutexes (9)
The unique_lock is more flexible:

unique_lock<mutex> unique_lock_name(associated_mutex_name);

// as lock_guard – the constructor locks the associated mutex.

unique_lock<mutex> unique_lock _name(associated_mutex_name, std::defer_lock);

// the constructor does not lock the associated mutex

To lock later you may use methods:

• lock() as the lock() of mutex

• try_lock() as the try_lock() of mutex

• try_lock_for as the try_lock_for of timed_mutex

• try_lock_until as the try_lock_until of timed_mutex

The destructor of unique_lock unlocks the associated mutex. But you may also unlock

with unlock() method. Example:

mutex mx; // see https://en.cppreference.com/w/cpp/thread/unique_lock.html

unique_lock<mutex> lock (mx, std::defer_lock);

...

lock.lock(); // locks the mutex mx

…………………………..

if (…)

 return; // unlocks mutex mx

..........................

lock.unlock(); // unlocks the mutex mx

https://en.cppreference.com/w/cpp/thread/unique_lock.html

Mutexes (10)

Some terminology:

mutex mx;

..

mx.lock(); // the thread acquires the mutex

...................... // the thread owns the mutex

mx.unlock(); // the thread releases the mutex

unique_lock<mutex> lock(mx, std::defer_lock);

...

lock.lock(); // the thread acquires the lock

.......................... // the thread owns the lock

lock.unlock(); // the thread releases the lock

Call a function just once (1)
Suppose we have two threads sharing a common but not initialized yet resource. The code

of both threads starts with the call to initializing function. For example, one of the threads

sends data to an external device, the other receives data and the shared device is a COM

port or a TCP/IP socket. It is unknown which of the threads will call the initializer first.

But it is clear that the initializer must be called only once.

void ::initializer();

 // initializes the common resource, for simplicity let it to be out of classes

class Thread_1 { …. void operator()() { initializer(); … } …..};

class Thread_2 { …. void operator()() { initializer(); … } …..};

The most effective solution to similar problems is to apply the call_once mechanism:

1. Define variable of type once_flag, it must be accessible for both threads:

once_flag flag_name;

2. In both threads call the initializer in this way:

call_once(flag, pointer_to_initializer, list_of_initializer_parameters);

If the first thread wants to call the initializer when the second thread is currently

intializing, it blocks until the end of initializing and then continues without stepping into

initializer. If the first thread wants to call the initializer when the second thread has already

finished the initializing, it continues immediately. Thus the faster thread performs the

initialization and the slower omits this step.

Call a function just once (2)

If you have several functions to be called only once you need also several flags.

The initializer may be a function, class method or functor. About details see

https://en.cppreference.com/w/cpp/thread/call_once.html/ .

Example:

#include <mutex>

void ::OpenFile(const char *pFilename, fstream **pFile) {…………………….}

class Calculate_1

{

public:

 once_flag *pFlag;

 fstream *pSharedFile;

 Calculate_1(once_flag *p1, fstream *p2) : pFlag(p1), pSharedFile(p2) { }

 void operator() ()

 {

 call_once(*pFlag, OpenFile, "c:\\temp\\data.txt", &pSharedFile);

 ……………

 }

 ……………………………………..

};

// class Calculate_2 is similar

http://www.cplusplus.com/reference/mutex/call_once/

Call a function just once (3)

int main()

{

 once_flag flag;

 fstream *pDataFile;

 thread thread_1{ Calculate_1(&flag, pDataFile) };

 thread thread_2{ Calculate_2(&flag, pDataFile) };

 thread_1.join();

 thread_2.join();

 return 0;

}

One of the threads (impossible to say which) opens the file

Atomic variables (1)
If a single variable is shared, we may lock the operations with it using mutexes. But it is

more efficient to declare them as atomic variables.

An atomic operation is a machine instruction that is always executed without interruption.

A sequence of two or more machine instructions isn't atomic since the operating system

may suspend the execution of the current sequence of operations in favour of another task.

A C++ statement is atomic if the compiler translates it into a single machine instruction.

But each hardware architecture may translate the same C++ statement in its own different

way. So it is wise to say that none of the C++ is statements is atomic. See also slide Race

conditions (1).

An operation with atomic variables of course needs a sequence of machine instructions. But

the execution of this sequence is not interrupted. In other words, an operation with atomic

variables is locked although we need not to declare any mutexes for them.

#include <atomic> // see https://en.cppreference.com/w/cpp/atomic/atomic.html

using namespace std;

atomic<int> i(0);

atomic<char> c('A');

atomic<long> l(100000);

............................. // all the integral types are allowed

i, c, l etc. are objects. Their initialization is compulsory.

https://en.cppreference.com/w/cpp/atomic/atomic.html

Atomic variables (2)
Due to operator functions we may write simply:

atomic<int> i = 0;

atomic<char> c = 'A';

atomic<long> l = 100000;

Functions declared in atomic classes are interlocked functions. It means that if one of the

functions associated with an atomic variable is running and another thread tries to call this

or some other function of the same atomic variable, this thread has to wait. In other words,

the functions of atomic classes lock and unlock their inner contents automatically. For

example:

i.store(1); // or due to operator functions we may write also i = 1;

if (i.load() == 1) // or due to operator functions we may write also if (i == 1)

Some examples about the other atomic class functions:

i.fetch_add(1); // or due to operator functions we may write also i++;

i.fetch_add(10); // or due to operator functions we may write also i+=10;

i.fetch_sub(1); // or due to operator functions we may write also i--;

But:

atomic<int> i1 = 10;

atomic<int> i2 = i1; // error

i2 = i1; // error

i2.exchange(i1); // meaning: i2 = i1

Atomic variables (3)
Similarly:

atomic<int> i1 = 10, i2 = 20, i3 = 0;

i3.exchange(i1 + i2); // i3 = i1 + i2

cout << i3 << endl;

i3.exchange(i1 * i2); // i3 = i1 * i2

Atomic pointers are also allowed, for example:

atomic<vector<int> *> pv = new vector<int>(10);

atomic<int *> pi = new int[10];

Pointer operations are supported with overloaded operators, for example

*pi = 10;

*(pi + 1) = 20;

Thread interrupt (1)
Rather often a thread runs in endless loop and we need a mechanism to interrupt it. In C++

killing of thread is not allowed. What we need are tools for so called cooperative

(sometimes said polite) cancellation with which we force the thread entry point function to

return. In the following example we use an atomic<bool> variable for that:

class Worker {

 public:

 vector<int> &buf;

 atomic<bool> &stop;

Worker (vector<int> &v, atomic<bool> &b) : buf(v), stop(b) { }

void operator() () {

 default_random_engine generator;

 uniform_int_distribution<int> delay_distribution(0, 10000);

 uniform_int_distribution<int> value_distribution(0, 100);

 while (!stop) { // worker runs until stop becomes true (polls value of variable stop)

 this_thread::sleep_for(chrono::milliseconds(delay_distribution(generator)));

 ranges::generate(buf, [&]() { return value_distribution(generator); });

 ………………… // do something with the generated numbers

 }

 }

};

Thread interrupt (2)
class Controller

{

 public:

 atomic<bool> &stop;

 Controller(atomic<bool> &b) : stop(b) { }

 void operator() ()

 {

 _getch(); // the human operator has to press a key to stop worker

 stop = true;

 }

};

int main()

{

 atomic<bool> stop = false;

 vector<int> buf(32);

 thread ControllerThread { Controller(stop) };

 thread WorkerThread { Worker(buf, stop) };

 WorkerThread.join();

 ControllerThread.join();

 return 0;

}

Thread interrupt (3)

In the previous example the thread entry point function checks periodically the stop flag and

quits if an outer function has set it to false. Class jthread has better tools:

#include <stop_token> // see https://en.cppreference.com/w/cpp/header/stop_token

void Worker(int n, stop_token stop) { // obligatory parameter of type stop_token

 for (int i = 0; i < n && !stop.stop_requested(); i++) {

 this_thread::sleep_for(chrono::seconds(1));

 cout << i << endl;

 } // the thread must time to time poll the state of stop_token object

}

void Test {

 stop_source source; // to control the interrupting

 stop_token stop = source.get_token();

 jthread thr(Worker, 10, stop);

 this_thread::sleep_for(chrono::seconds(5)); // allow to run 5 seconds and then interrupt

 source.request_stop(); // after that stop_requested() in Worker returns true

}

https://en.cppreference.com/w/cpp/header/stop_token

Thread interrupt (4)

It is possible to associate the stop_token object with a callback (function, functor or

lambda). The callback is invoked when the stop is requested:

void Worker(int n, stop_token stop)

{

 stop_callback OnRequest(stop, []() { cout << "Broken" << endl; });

 for (int i = 0; i < n && !stop.stop_requested(); i++)

 {// the thread must time to time check the state of stop_token object

 this_thread::sleep_for(chrono::seconds(1));

 cout << i << endl;

 }

}

void Test

{

 stop_source source; // to control the interrupting

 stop_token stop = source.get_token();

 jthread thr(Worker, 10, stop);

 this_thread::sleep_for(chrono::seconds(5));

 source.request_stop(); // after that stop_requested() in Worker returns true

 // in addition callback OnRequest is invoked,

 // i.e. message "Broken" is printed

}

Condition variables (1)

Inter-thread communication in C++ is implemented by condition variables. Let us have two

threads:

1. The producer thread retrieves data from an external source or generates data in some

other way. If a package of data is ready, it stores it in a buffer. Time interval needed to

create a package is occasional.

2. The consumer thread reads the data from the buffer shared with the producer and

processes it and / or views on the screen. Time interval needed to process a package and

view it is also occasional. Problem: the processing may start only when the producer has

finished its task.

#include <condition_variable>

 // see https://en.cppreference.com/w/cpp/thread/condition_variable.html

mutex mx; // must be accessible in both threads

condition_variable cv; // must be accessible in both threads, cooperates with mutex

// Producer:

{

 unique_lock<mutex> lock(mx);

 …. // code in which buffer is accessed

 cv.notify_one();

}

// Consumer:

{

 unique_lock<mutex> lock(mx);

 cv.wait(lock);

 …. // code in which buffer is accessed

}

https://en.cppreference.com/w/cpp/thread/condition_variable.html

Condition variables (2)
wait(unique_lock_name);

The wait method can be called only when the thread is already locked by unique_lock

managing the associated mutex. It:

1. Automatically releases the lock (atomically calls unlock() of the associated unique_lock),

thus allowing the other thread to run.

2. Blocks its own thread and starts to wait for a notification.

3. Unblocks its thread when the other thread has emitted the notification.

4. Locks again (before return atomically calls lock() of the associated unique_lock).

Notification is emitted by method notify_one() called from another thread.

If several threads are waiting, notify_one() releases only one of them (impossible to say

which). Method notify_all() sends notification to all the threads stopped by the current

conditional variable. If there are no waiting threads, those functions do nothing.

{ // Producer:

 unique_lock<mutex> lock(mx);

 ….. // code in which buffer is accessed

 cv.notify_one();

 // releases consumer

}

{ // Consumer:

 unique_lock<mutex> lock(mx);

 cv.wait(lock);

 // blocks consumer and releases

 // the lock, producer can start

 …. // code in which buffer is accessed

}

Condition variables (3)
wait(unique_lock_name, predicate);

The predicate may be a pointer to function, lambda expression or functor. It cannot have

any arguments and it must return true or false.

wait() with predicate:

1. If the predicate has returned true, does nothing and returns immediately.

2. If the predicate has returned false, releases the lock (atomically calls unlock() of the

associated unique_lock), thus allowing the other thread to run.

3. Also, if the predicate has returned false blocks its thread and starts to wait for a

notification.

4. If the notification has arrived, calls the predicate once more.

5. If the predicate still returns false, the thread stays in blocked state.

6. If the predicate returns true, unblocks its thread and locks the associated unique_lock.

std::notify_all_at_thread_exit(condition_variable_name, unique_lock_name);

This function not belonging to any classes is mostly called before join to release threads

that may be have got stuck.

Condition variables (4)

Example:

int main()

{

 vector<int> buf; // empty vector

 mutex mx;

 condition_variable cv;

 thread ProducerThread { Producer (buf, mx, cv, 32) };

 thread ConsumerThread { Consumer (buf, mx, cv) };

 ProducerThread.join();

 ConsumerThread.join();

 return 0;

}

// the order of launching threads is meaningless

Condition variables (5)
class Producer

{

public:

 vector<int> &buf;

 mutex &mx;

 condition_variable &cv;

 int buf_size;

 Producer (vector<int> &v, mutex &m, condition_variable &c, int n) :

 buf(v), mx(m), cv(c), buf_size(n) { }

 void operator() ()

 {

 default_random_engine generator;

 uniform_int_distribution<int> delay (0, 10000);

 uniform_int_distribution<int> random_number(0, 100);

 unique_lock<mutex> lock(mx); // locks the mutex

 buf.resize(buf_size);

 this_thread::sleep_for(chrono::milliseconds(delay(generator)));

 ranges::generate(buf, [&]() { return random_number(generator); });

 cv.notify_one(); // releases the comsumer

 } // variable "lock" deleted, mutex automatically unlocked

};

Condition variables (6)
class Consumer

{

public:

 vector<int> &buf;

 mutex &mx;

 condition_variable &cv;

Consumer(vector<int> &v, mutex &m, condition_variable &c) :

buf(v), mx(m), cv(c) { }

 void operator() ()

 {

 unique_lock<mutex> lock(mx); // locks the mutex

 cv.wait(lock, [&]() { return !buf.empty(); });

 // If the buffer is empty, unlocks the mutex allowing the producer to work

 // and starts to wait for the notification from the producer.

 // The producer sends notification when the buffer is filled. Consequently

 // predicate then returns true and the thread will be unblocked.

 ranges::for_each(buf, [](int i) { cout << i << ' '; });

 cout << endl;

 }

}; // destructor called, mutex automatically unlocked

Condition variables (7)

Comments:

1. Suppose that the producer steps into the critical section first. In that case the consumer

must wait until the producer has left the critical section. i.e. until the end of producer

thread. The first step of the consumer is the call to wait(). As the buffer is already full,

the predicate returns true and wait() returns immediately - the consumer may start to

run. The notification sent by the producer is ignored.

2. Now suppose that the consumer steps into the critical section first and thus blocks the

producer. The first step of the consumer is the call to wait(). As the buffer is empty, the

predicate returns false. Now:

a. wait() unlocks the mutex, the producer may start to run.

b. wait() does not return but starts to wait for the notification. So the consumer is

blocked and the producer may complete its task.

Before return the producer sends notification. wait() in consumer calls once more the

predicate. As the buffer is already filled, the predicate returns true. Now:

a. wait() locks the mutex, but as the producer has already finished, it has no

consequences.

b. wait() returns and thus the consumer may start to run.

So, in this solution we may be sure that at first the producer creates the data and only after

that the consumer processes the data. Compare it with solution on slides Mutexes (3) …

Mutexes (5).

Condition variables (8)

Example: classical producer – consumer problem in which the producer has to inform the

the consumer that a data package is prepared, wait until the consumer has finished the

processing and start to prepare the next package.

int main()

{

 atomic<bool> stop = false;

 vector<int> *pBuf = new vector<int>;

 mutex mx;

 condition_variable cv;

 thread ControllerThread{ Controller(stop) }; // see slide Atomic variables (5)

 thread ProducerThread{ Producer(pBuf, &stop, &mx, &cv, 32) };

 thread ConsumerThread{ Consumer(pBuf, &stop, &mx, &cv) };

 ConsumerThread.join();

 ProducerThread.join();

 ControllerThread.join();

 return 0;

}

Condition variables (9)
class Producer {

public: vector<int> *pBuf;

 atomic<bool> *pStop;

 mutex *pMx;

 condition_variable *pCv;

 int buf_size;

 Producer (vector<int> *pv, atomic<bool> *pb, mutex *pm, condition_variable *pc,

 int n) : pBuf(pv), pStop(pb), pMx(pm), pCv(pc), buf_size(n) { }

 void operator() () {

 default_random_engine generator;

 uniform_int_distribution<int> delay (0, 10000);

 uniform_int_distribution<int> random_number(0, 100);

 while (!*pStop) {

 unique_lock<mutex> lock(*pMx); // locks the mutex

 pBuf->resize(buf_size);

 this_thread::sleep_for(chrono::milliseconds(delay(generator)));

 ranges::generate(*pBuf, [&]() { return random_number(generator); });

 pCv->notify_one(); // releases the comsumer

 pCv->wait(lock); // blocks the producer

 }

 }

};

Condition variables (10)
class Consumer {

public: vector<int> *pBuf;

 atomic<bool> *pStop;

 mutex *pMx;

 condition_variable *pCv;

 Consumer (vector<int> *pv, atomic<bool> *pb, mutex *pm, condition_variable *pc) :

 pBuf(pv), pStop(pb), pMx(pm), pCv(pc) { }

 void operator() () {

 while (!*pStop) {

 unique_lock<mutex> lock(*pMx); // locks the mutex
 pCv->wait(lock, [&]() { return !pBuf->empty(); });

 ranges::for_each(*pBuf, [](int i) { cout << i << ' '; });

 pBuf->resize(0);

 cout << endl;

 pCv->notify_one(); // releases the producer

 }

 }

};

Condition variables (11)

wait_for(unique_lock_name, duration);

wait_until(unique_lock, time_point);

and

wait_for(unique_lock_name, duration, predicate);

wait_until(unique_lock_name, timepoint, predicate);

Those two methods block the thread until notified or until the specified timeout has

elapsed or timepoint has been reached. The return value is cv_status::timeout or

cv_status::no_timeout. About the usage of predicates see slide Conditional variables (3).

Condition variables (12)

It may happen that when the stop is requested (see slide Thread interrupt (3)), a thread is

waiting for notification for a condition_variable and cannot check the state of stop_token.

The following example presents the solution of this problem:

void Test {

 mutex mx;

 condition_variable_any cv; // use instead of condition_variable

 // see https://en.cppreference.com/w/cpp/thread/condition_variable_any

 queue<int> values;

 stop_source source; // to control the interrupting

 stop_token stop = source.get_token();

 jthread thr1(Consumer, &mx, &cv, &values, stop); // on the next slides

 jthread thr2(Producer, &mx, &cv, &values, stop);

 this_thread::sleep_for(chrono::seconds(5)); // allow to run 5 seconds and then interrupt

 source.request_stop();

 thr1.join();

 thr2.join();

}

condition_variable can wait only on unique:lock<mutex>. condition_variable_any can wait

on any lockable object (i.e. on anything that has lock() and unlock() methods). In addition,

with condition_variable_any we can stop waiting not only with notification but also with

interrupting the thread.

https://en.cppreference.com/w/cpp/thread/condition_variable_any

Condition variables (13)

void Producer(mutex* pmx, condition_variable_any* pcv, queue<int>* pvalues,

 stop_token stop)

{ // the Producer must insert into a queue 10 random numbers

 default_random_engine generator;

 uniform_int_distribution<int> random_number(0, 100);

 unique_lock<mutex> lock(*pmx);

for (int i = 0; i < 10; i++) {

 if (stop.stop_requested()) {

 cout << "Stop request detected" << endl;

 while (!pvalues->empty()) {

 pvalues->pop(); // interrupt, clean the queue and exit

 }

 return;

 }

 pvalues->push(random_number(generator));

 this_thread::sleep_for(chrono::milliseconds(1000));

 }

 pcv->notify_one(); // queue is filled, allow the consuer to start

 cout << endl;

}

Condition variables (14)

void Consumer(mutex *pmx, condition_variable_any *pcv, queue<int> *pvalues,

 stop_token stop) {

 unique_lock<mutex> lock(*pmx);

 pcv->wait(lock, stop, [&]() { return !pvalues->empty(); });

 // waiting ends when the notification has arrived or when the stop is requested

 if (stop.stop_requested()) {

 cout << "Waiting broken off" << endl;

 return;

 }

 while (!pvalues->empty()) { // prints the results

 cout << pvalues->front() << ' ';

 pvalues->pop();

 }

 cout << endl;

}

async and futures (1)
Suppose our program consists of 3 tasks. The final task 3 needs data prepared by tasks 1 and 2.

There are no any dependences between tasks 1 and 2: they do not need request data from each

other, do not share resources, etc. If we have a multiprocessor computer, we may put task 2

into a separate background thread and force it run concurrently with task 1: thus we may get

better performance.

There is another way: use function std::async and futures:

future <entry_point_function_return_value_type> future_name =

 async(entry_point_function_name, list_of_input_parameters);

The task entry point function may have any set of input parameters. Example: suppose the

entry point function for task 2 is:

bool ReadData(unsigned char *, int);

To start asynchronous reading task:

#include <future> // see https://en.cppreference.com/w/cpp/thread/future.html

 // see https://en.cppreference.com/w/cpp/thread/async.html

unsigned char *pBuf = new unsigned char[1024 * 10];

future<bool> result = async(ReadData, pBuf, 1024 * 10); // task 2 is now in a separate thread

………………………………….. // program continues with task 1

if (result.get()) // method get() returns the return value of task entry point function

{ // you can call get on a specific future only once!

 ……………………… // program starts to execute task 3

}

https://en.cppreference.com/w/cpp/thread/future.html
https://en.cppreference.com/w/cpp/thread/async.html

async and futures (2)
async does not guarantee that a separate thread with the specified entry point function will

start immediately. When the future's get() method is called, it is possible that:

• The asynchronous task has finished and get() returns the output value immediately.

• The asynchronous task is still running. In that case get() blocks the current thread until

the return value has become available.

• The asynchronous task has not started yet. Then it is forced to start, the current thread

blocks. Actually it means that the ansynchronous executing of tasks has failed. If the

call to get() is omitted, it may happen that the asynchronous task never starts.

There are some possibilities to control the behavior of asynchronous task:

future< entry_point_function_return_value_type> future_name =

 async(launch_policy, entry_point_function_name, list_of_input_parameters);

The launch policy may be:

1. launch::async – try to launch a new thread immediately. May be risky because if it is

not possible, exception will be thrown.

2. launch::deferred – launch when get() is called, i.e. no concurrent executing. May be

useful as temporary setting for debugging.

3. launch::async | launch::deferred – default setting, launch time is set by system.

async and futures (3)
Class future has method:

wait();

This function behaves similarly to get(): if the asynchronous task has not finished it blocks

the current thread until the asynchronous task has ended. Also, if necessary it forces the

asynchronous task to start. Later, the output value may be retrieved by get().

Class future has also methods:

• wait_for(duration);

• wait_until(timepoint);

Those functions block the current thread until the asynchronous task has finished or

timeout elapsed or the specified timepoint reached. But they do not force the asynchronous

task to start. Their return value may be:

1. future_status::deferred - the asynchronous task has not started yet.

2. future_status::timeout - the asynchronous task is running but waiting time has elapsed.

3. future_status::ready - the asynchronous task has finished.

Example:

if (result.wait_for(chrono::seconds(60)) != future_status::ready) {

{

 cout << "It seems that the asynchronous task has problems" << endl;

 return;

}

wait_for(chrono::seconds(0)) returns us the current status of the asynchronous task.

async and futures (4)
If the asynchronous task has thrown an unhandled exception, get() catches it and rethrows:

try

{

 if (result.get())

 {

 ……………… // program starts to execute task 3

 }

}

catch (exception &e)

{

 …………………..

}

Method wait() does not rethrow exceptions.

Method get() may be called only once. After get() the future becomes invalid. To check the

state of future use method valid() – it returns false if the future has become not useable.

In a complicated application with a lot of threads multiple calls to get() may be needed. In

that case use shared_future (https://en.cppreference.com/w/cpp/thread/shared_future.html).

https://en.cppreference.com/w/cpp/thread/shared_future.html

async and futures (5)
Instead of entry point function we may use functor or lambda. Example:

class Producer

{

public:

 list<int> &buf; // reference

 int lower, upper;

 Producer(list<int> &v, int l, int u) : buf(v), lower(l), upper (u) { }

 void operator() ()

 {

 default_random_engine generator;

 uniform_int_distribution<int> delay(0, 10000);

 uniform_int_distribution<int> random_number(lower, upper);

 this_thread::sleep_for(chrono::milliseconds(delay(generator)));

 ranges::generate(buf, [&]() { return random_number(generator); });

 }

};

async and futures (6)
int main()

{

 list<int> buf1(10);

 list<int> buf2(10);

 future<void> f1 = async(Producer(buf1, 0, 100));

 future<void> f2 = async(Producer(buf2, -100, 0));

 f1.get(); // here the thread returns nothing but we need to wait until it quits

 // so get() from class future behaves as join from class thread

 f2.get();

 buf1.sort();

 buf2.sort();

 buf1.merge(buf2);

 ranges::for_each(buf1, [](int i) { cout << i << ' '; });

 cout << endl;

 return 0;

}

Shortly: a future and async provide facilities to retrieve values and / or exceptions from a

function that is located in background thread and is currently executing or has already

executed or will be executed (in the last case, they may force to start executing).

async and futures (7)
Example (compare with solution on slides Thread interrupt (1) … (4)):

class Worker

{

public:

 vector<int> &buf;

 future<void> &fut;

Worker (vector<int> &v, future<void> &f) : buf(v), fut(f) { }

void operator() ()

{

 default_random_engine generator;

 uniform_int_distribution<int> delay_distribution(0, 10000);

 uniform_int_distribution<int> value_distribution(0, 100);

 while (fut.wait_for(chrono::seconds(0)) != future_status::ready) {

 // worker runs until the keyboard async thread has not exited

 this_thread::sleep_for(chrono::milliseconds(delay_distribution(generator)));

 ranges::generate(buf, [&]() { return value_distribution(generator); });

 ………………… // do something with the generated numbers

 }

 }

};

async and futures (8)
void Keystroke()

{

 _getch(); // waits for keystroke, then exits

}

int main()

{

 vector<int> buf(32);

 future<void> fut = async(Keystroke);

 thread WorkerThread { Worker(buf, fut) };

 WorkerThread.join();

 ………………….

 return 0;

}

Packaged tasks
It is possible to prepare tasks beforehand and invoke them later (or not invoke at all if they

come out to be unnecessary):

packaged_task<entry_point_value_return_type(list_of_parameter_types)>

task_name(entry_point_function_name);

Each packaged_task contains a future. To retrieve it:

future<entry_point_value_return_type> future_name = task_name.get_future();

To invoke task:

task_name(actual_parameters_list);

and after that apply the associated future's get() to retrieve the result.

Example: suppose the entry point function (functors and lambdas also allowed) for a task is:

bool ReadData(unsigned char *, int);

To create the associated task package:

#include <future> // see https://en.cppreference.com/w/cpp/thread/packaged_task.html

packaged_task<bool(unsigned char *, int)> read_task(ReadData);

………………………………….. // program continues

if (data_needed) {

 unsigned char *pBuf = new unsigned char[1024 * 10];

 future<bool> read_result = read_task.get_future(); // retrieves the future

 read_task(pBuf, 10240) // program starts to execute task, if possible then in separate thread

 bool success = read_result.get(); // blocks until the end of task

}

https://en.cppreference.com/w/cpp/thread/packaged_task.html

Promises (1)
We can store the data created by a thread into a promise and later use future to retrieve it

into another thread:

promise<task_return_value_type> promise_name;

promise_name.set_value(data_to_store); // can be called only once

Each promise has a future. When we need data stored in promise, retreive it:

future<return_value_type> future_name = promise_name.get_future();

and then call get().

Example:

void Producer(list<int> *pBuf, int lower, int upper, promise<list<int> *> *pPromise)

{ // see https://en.cppreference.com/w/cpp/thread/promise.html

 default_random_engine generator;

 uniform_int_distribution<int> delay(0, 10000);

 uniform_int_distribution<int> random_number(lower, upper);

 this_thread::sleep_for(chrono::milliseconds(delay(generator)));

 ranges::generate(*pBuf, [&]() { return random_number(generator); });

 pBuf->sort();

 pPromise ->set_value(pBuf); // store the result into promise

 // turn attention that the thread entry point function

 // does not return any value

}

You can call set_value on a specific promise only once!

https://en.cppreference.com/w/cpp/thread/promise.html

Promises (2)
void Consumer(promise<list<int>*>* pPromise)

{

 future<list<int> *> fut = pPromise->get_future(); // future associated with promise

list<int> *pRes = fut.get(); // retrieve the result, if necesasary, wait

 ranges::for_each(*pRes, [](int i) { cout << i << ' '; });

 cout << endl;

}

int main()

{ // Compare with similar example on slides Mutexes (3) … Mutexes (5)

 // Here we need neither mutexes nor shared memory fields

 promise<list<int> *> prom;

 list<int> buf(10);

 thread thr1(Producer, &buf, 0, 100, &prom);

 thread thr2(Consumer, &prom);

 thr1.join();

 thr2.join();

 return 0;

}

Promises (3)
The promises are very necessary if we need to get results created by detached threads.

Example:

void Producer(list<int> *pBuf, int lower, int upper, promise<void> *pPromise)

{

 default_random_engine generator;

 uniform_int_distribution<int> delay(0, 10000);

 uniform_int_distribution<int> random_number(lower, upper);

 this_thread::sleep_for(chrono::milliseconds(delay(generator)));

 ranges::generate(*pBuf, [&]() { return random_number(generator); });

 pBuf->sort();

 pPromise ->set_value(); // inform that the thread has ended

}

void Consumer(list<int> *pBuf, promise<void>* pPromise)

{

 future<void> fut = pPromise->get_future(); // future associated with promise

fut.get(); // wait until the end of producer

 ranges::for_each(*pRes, [](int i) { cout << i << ' '; });

 cout << endl;

}

Promises (4)
int main()

{

 promise<void> prom;

 list<int> buf(10);

 thread thr1(Producer, &buf, 0, 100, &prom);

 thr1.detach();

 thread thr2(Consumer, &buf, &prom);

 thr2.join();

 return 0;

}

Latches (1)

C++ v. 20 has some new tools for synchronization of threads. One of them is the latch:

#include <latch> // see https://en.cppreference.com/w/cpp/thread/latch

void Test () {

 vector<int> v1, v2;

 latch data_ready(2), clear_data(1);

 // Latch has a counter, its initial value is the parameter of constructor

 // There is no possibility to increase or reset the value of counter later

 jthread thr1(Producer1, &v1, 10, 500, &data_ready, &clear_data); // see the next slide

 jthread thr2(Producer2, &v2, 5, 200, &data_ready, &clear_data);

 data_ready.wait(); // Wait until the latch counter is zero. The threads decrement the

 // counter. So, Test() can continue when the both vectors are filled

 ranges::sort(v1);

 ranges::sort(v2);

 vector<int> v(15);

 ranges::merge(v1, v2, v.begin());

 ranges::for_each(v, [](const int& i) { cout << i << ' '; });

 cout << endl;

 clear_data.count_down(); // decrements the counter, allow the threads to continue

 thr1.join();

 thr2.join();

}

https://en.cppreference.com/w/cpp/thread/latch

Latches (2)
void Producer1(vector<int> *pvec, int n, int t, latch *pdata_ready, latch *pclear_data) {

 default_random_engine generator;

 uniform_int_distribution<int> random_number(0, 100);

for (int i = 0; i < n; i++) { // fill the vector

 pvec->push_back(random_number(generator));

 this_thread::sleep_for(chrono::milliseconds(t));

 }

 pdata_ready->count_down(); // atomically decrements the latch counter

 pclear_data->wait(); // waits until latch clear_data decremented by Test() becomes 0

 pvec->clear(); // data is consumed, we can now delete it

}

void Producer2(vector<int>* pvec, int n, int t, latch *pdata_ready, latch *pclear_data) {

 default_random_engine generator;

 binomial_distribution<int> random_number(100);

for (int i = 0; i < n; i++) {

 pvec->push_back(random_number(generator));

 this_thread::sleep_for(chrono::milliseconds(t));

 }

 pdata_ready->count_down();

 pclear_data->wait();

 pvec->clear();

}

Barriers (1)
The barrier is more flexible:

#include <barrier> // see https://en.cppreference.com/w/cpp/thread/barrier

void Test ()

{

 vector<int> v1, v2;

 barrier<> data_ready { 3}; // barrier for 3 tasks

 // here template barrier has default parameter

 jthread thr1(Producer1, &v1, 10, 500, &data_ready); // see the next slide

 jthread thr2(Producer2, &v2, 5, 200, &data_ready);

 data_ready.arrive_and_wait(); // The first task is performed: the threads are launched

 // Waits until the other 2 tasks implemented by Producer1 and Producer2 are performed

 // When all the 3 tasks are marked as done, stops waiting

 ranges::sort(v1);

 ranges::sort(v2);

 vector<int> v(15);

 ranges::merge(v1, v2, v.begin());

 ranges::for_each(v, [](const int& i) { cout << i << ' '; });

 cout << endl;

 thr1.join();

 thr2.join();

}

https://en.cppreference.com/w/cpp/thread/barrier

Barriers (2)
void Producer1(vector<int>* pvec, int n, int t, barrier<> *pdata_ready) {

 default_random_engine generator;

 uniform_int_distribution<int> random_number(0, 100);

for (int i = 0; i < n; i++) {

 pvec->push_back(random_number(generator));

 this_thread::sleep_for(chrono::milliseconds(t));

 }

 pdata_ready->arrive_and_wait();

 // marks the task as done (vector is filled), waits until all the tasks are closed

}

void Producer2(vector<int>* pvec, int n, int t, barrier<> *pdata_ready) {

 default_random_engine generator;

 binomial_distribution<int> random_number(100);

for (int i = 0; i < n; i++) {

 pvec->push_back(random_number(generator));

 this_thread::sleep_for(chrono::milliseconds(t));

 }

 pdata_ready->arrive_and_wait();

}

Barriers (3)
The barrier may have a callback function. It is invoked when all the tasks are marked as

done. It is implemented as a functor:

class Msg {

 public: void operator() () noexcept { cout << "Ready" << endl; } // noexcept is necessary

};

void Producer1(vector<int>* pvec, int n, int t, barrier<Msg> *pdata_ready) {

………………….

}

void Producer2(vector<int>* pvec, int n, int t, barrier<Msg> *pdata_ready) {

………………….

}

void Test () {

 barrier<Msg> data_ready { 3 }; // template parameter is the callback typename

………………….

}

Remark: about keyword noexcept read slide C++ standard exceptions (3) from chapter Cpp

standard functions, course IAX0586

Barriers (4)
When all the tasks are done and the arrive_and_wait() method returns, the number of tasks

specified in the constructor is reset. Thus, a barrier may be used in loops. The following

example presents a producer-consumer problem solution implemented with barriers:

void Test ()

{

 barrier<> data_ready { 2 };

 vector<int> v;

 default_random_engine generator;

for (int i = 0; i < 5; i++)

{

 jthread* pthr1 = new jthread { Producer, &generator, &v, 10, &data_ready };

 jthread* pthr2 = new jthread { Consumer, &v, &data_ready };

 pthr1->join();

 pthr2->join();

 delete pthr1;

 delete pthr2;

 }

}

Barriers (5)
void Producer(default_random_engine *pgen, vector<int>* pvec, int n, barrier<>* pready)

{

 uniform_int_distribution<int> random_number(0, 100);

 pvec->clear();

for (int i = 0; i < n; i++)

{

 pvec->push_back(random_number(*pgen));

 this_thread::sleep_for(chrono::milliseconds(500));

 }

 pready->arrive_and_wait();

}

void Consumer(vector<int>* pvec, barrier<>* pready)

{

 pready->arrive_and_wait();

 ranges::for_each(*pvec, [&](const int& i)

 {

 cout << i << ' ';

 this_thread::sleep_for(chrono::milliseconds(500));

 });

 cout << endl;

}

Semaphores (1)

C++ v. 20 has two types of semaphores:

#include <semaphore> // https://en.cppreference.com/w/cpp/thread/counting_semaphore

int max_value, initial_value;

counting_semaphore<max_value> sem1(initial_value);

binary_semaphore sem2(initial_value); // max_value is 1, initial_value may be 0 or 1

Method release() atomically increments the counter, method acquire() decrements it. The

counter cannot be negative and cannot be greater than the max_value.

If the counter has become zero, acquire() blocks the thread. If due to call to release() the

counter has a positive value, the blocked thread can continue.

An example about usage of semaphores: suppose we have a server that must process

requests. For processing a new request we have to launch a new thread. However, the

number of threads running concurrently cannot be endless.

To solve the problem we start the program with semaphore in which the initial_value is set

to max. Each thread starts with call to acquire(), i.e. with starting the thread we decrement

the counter. If the counter becomes zero, max allowed number of threads are already

running and the new thread must wait. Each thread ends with call to release(), i.e. with

ending the thread we increment the counter. If the counter was 0, it is now 1 and the thread

that was blocked may start to run.

The binary_semaphore can replace mutexes. See the example on the next slide.

https://en.cppreference.com/w/cpp/thread/counting_semaphore

Semaphores (2)

void Producer(vector<int>* pvec, int n, binary_semaphore* pdone) {

 default_random_engine generator;

 uniform_int_distribution<int> random_number(0, 100);

for (int i = 0; i < n; i++) {

 pvec->push_back(random_number(generator));

 this_thread::sleep_for(chrono::milliseconds(500));

 }

 pdone->release();

}

void Consumer(vector<int>* pvec, binary_semaphore* pdone) {

 pdone->acquire(); // blocked until the Producer increments the counter

 ranges::for_each(*pvec, [&](const int& i) { cout << i << ' '; });

 cout << endl;

}

void Test () {

 binary_semaphore done(0); // initially in state 0

 vector<int> v;

 jthread thr1(Producer, &v, 10, &done);

 jthread thr2(Consumer, &v,&done);

 thr1.join();

 thr2.join();

}

Asynchronous I/O in Windows (1)
C++ I/O standard classes (see https://en.cppreference.com/w/cpp/io/basic_fstream.html are

excellent for disk file operations. For reading from and writing into external devices

connected over COM port or TCP socket, we have to use the Windows mechanisms.

The first step is to create the file:

HANDLE handle_name = // HANDLE is defined in Windows.h

CreateFileA(file_name_and_path, // as regular C string

desired_access, // GENERIC_READ for files used for reading only

 // GENERIC_WRITE for files used for writing only

 // GENERIC_READ | GENERIC_WRITE for the both operations

share_mode, // outside the course scope, set to 0

security_attributes, // outside the course scope, set to NULL

creation_disposition, // CREATE_ALWAYS and if already exists, at first destroy it

 // CREATE_NEW and if already exists, the operation fails

 // OPEN_EXISTING and if not found, the operation fails

 // OPEN_ALWAYS and if not found creates a new one

 // TRUNCATE_EXISTING (destroy the contents) and if not found,

 // the operations fails

flags_and_attributes, // in our course FILE_FLAG_OVERLAPPED (discussed later)

template_file_handle); // outside the course scope, set to NULL

The complete specification of function CreateFileA is on website

https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-createfilea is

https://en.cppreference.com/w/cpp/io/basic_fstream.html
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-createfilea
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-createfilea
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-createfilea
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-createfilea
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-createfilea
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-createfilea
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-createfilea

Asynchronous I/O in Windows (2)
If the function fails, the return value is INVALID_FILE_HANDLE. To know the reason, call

function GetLastError:

unsigned long error_code = GetLastError();

The error codes are on https://docs.microsoft.com/en-us/windows/desktop/Debug/system-

error-codes.

If you do need the file any more, close it:

CloseHandle(handle_name);

Example:

HANDLE hFile = CreateFileA("FileExample.bin", GENERIC_READ | GENERIC_WRITE,

 0, NULL, CREATE_ALWAYS, FILE_FLAG_OVERLAPPED, NULL);

if (hFile == INVALID_HANDLE_VALUE)

cout << "File not created, error " << GetLastError() << endl;

// Important: you should always check was a file operation successful or not

………………………………………………

CloseHandle(hFile);

https://docs.microsoft.com/en-us/windows/desktop/Debug/system-error-codes
https://docs.microsoft.com/en-us/windows/desktop/Debug/system-error-codes
https://docs.microsoft.com/en-us/windows/desktop/Debug/system-error-codes
https://docs.microsoft.com/en-us/windows/desktop/Debug/system-error-codes
https://docs.microsoft.com/en-us/windows/desktop/Debug/system-error-codes
https://docs.microsoft.com/en-us/windows/desktop/Debug/system-error-codes
https://docs.microsoft.com/en-us/windows/desktop/Debug/system-error-codes

Asynchronous I/O in Windows (3)

To read from file synchronously:

int result_name = ReadFile(handle_name, pointer_to_buffer_that_receives_read_data,

max_number_of_bytes_to_read, pointer_to_variable_for _number_of_bytes_actually_read,

NULL);

If the reading failed, the return value is FALSE and GetLastError() returns the error code.

The actual number of read bytes may be less than the number of needed bytes.

Example:

unsigned long nBytesToRead = 1024, nReadBytes = 0;

unsigned char *pBuffer = new unsigned char[nBytesToRead];

HANDLE hFile;

int Result = ReadFile(hFile, pBuffer, nBytesToRead, &nReadBytes, NULL);

if (!Result)

 cout << "Data not read, error " << GetLastError() << endl;

else if (nReadBytes != nBytesToRead)

 cout << "Only " << nReadBytes << " bytes instead of " << nBytesToRead << " was read"

 << endl;

else

 cout << nReadBytes << " bytes was read" << endl;

The complete specification of function ReadFile is on website
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-readfile

https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-readfile
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-readfile
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-readfile
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-readfile
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-readfile
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-readfile
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-readfile

Asynchronous I/O in Windows (4)

To write into file synchronously:

int result_name = WriteFile(handle_name, pointer_to_buffer_containing_data,

number_of_bytes_to_write, pointer_to_variable_for _number_of_bytes_actually_written,

NULL);

If the writing failed, the return value is 0 and GetLastError() returns the error code. The

actual number of written bytes may be less than the number of bytes we wanted to write.

Example:

unsigned long nBytesToWrite = 1024, nWrittenBytes = 0;

unsigned char *pBuffer = new unsigned char[nBytesToWrite];

………………………………………………………….

HANDLE hFile;

int Result = WriteFile(hFile, pBuffer, nBytesToWrite, &nWrittenBytes, NULL);

if (!Result)

 cout << "Data not written, error " << GetLastError() << endl;

else if (nBytesToWrite != nWrittenBytes)

 cout << "Only " << nWrittenBytes << " bytes instead of " << nBytesToWrite

 << " was written" << endl;

else

 cout << nWrittenBytes << " bytes was written" << endl;

The complete specification of function WriteFile is on website

https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-writefile

https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-writefile
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-writefile
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-writefile
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-writefile
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-writefile
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-writefile
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-writefile

Asynchronous I/O in Windows (5)
The synchronous I/O operations with disk files in most cases do not lead to problems. For

Windows, however, any data that is not in the memory region set for the current application

is considered to be in a file. For example, if our application controls an external device

connected to computer through serial port COM1, then we need to read data from and write

data to file \\.\COM1. This external device may be temporarily or perpetually (is switched

off?) not able to send data to us or retrieve data that we want to send to it. In that case the

synchronous I/O operations block their thread and it is impossible to unblock it – in other

words the application hangs.

For asynchronous I/O we need Windows events:

HANDLE handle_name = CreateEventA (

 attributes, // outside the course scope, set to NULL

 reset_mode, // manual reset TRUE, auto reset FALSE

 initial_state, // not signaled FALSE, signaled TRUE

 name); // outside the course scope, set to NULL

Other standard functions for events:

SetEvent(handle_name); // state to signaled

ResetEvent(handle_name); // state to non-signaled

CloseHandle(handle_name);

See more on website:

https://docs.microsoft.com/en-us/windows/desktop/Sync/synchronization-functions#event-

functions

https://docs.microsoft.com/en-us/windows/desktop/Sync/synchronization-functions#event-functions
https://docs.microsoft.com/en-us/windows/desktop/Sync/synchronization-functions#event-functions
https://docs.microsoft.com/en-us/windows/desktop/Sync/synchronization-functions#event-functions
https://docs.microsoft.com/en-us/windows/desktop/Sync/synchronization-functions#event-functions
https://docs.microsoft.com/en-us/windows/desktop/Sync/synchronization-functions#event-functions
https://docs.microsoft.com/en-us/windows/desktop/Sync/synchronization-functions#event-functions
https://docs.microsoft.com/en-us/windows/desktop/Sync/synchronization-functions#event-functions

Asynchronous I/O in Windows (6)
The events are to block and unblock a thread:

int result_name = WaitForSingleObject(event_handle_name, timeout_in ms);

If the event is non-signaled, WaitForSingleObject function does not return and thus blocks

its thread. To unblock, another thread or an asynchronous I/O operation must set the event

to signaled. The function returns also when the timeout interval elapses. If the timeout is set

to INFINITE, time is not measured.

The return value may be:

• WAIT_OBJECT_0 – the event was set to signaled

• WAIT_TIMEOUT – the event is still non-signaled, but time has elapsed

• WAIT_FAILED – system problems

If the event is defined as auto-reset, WaitForSingleObject function also turns it back to not

signaled. If the event is defined as manual reset, the user has to apply function ResetEvent.

The other blocking / unblocking function is

int result_name = WaitForMultipleObjects(number_of_handles,

 pointer_to_array_of_handles, all_or_one, timeout_in ms);

It checks the state of several events stored into array. If the third parameter all_or_one is

TRUE, function WaitForMultipleObjects returns only when all the specified events are

signaled. If all_or_one is FALSE, it returns when at least one of them is signaled. If just the

array's i-th event has become signaled, the return value is WAIT_OBJECT_0 + i. If several

or all the events are signaled, i is the smallest index from the signaled events subset.

Asynchronous I/O in Windows (7)

For asynchronous I/O we need a struct of type OVERLAPPED:

OVERLAPPED Overlapped;

memset(&Overlapped, 0, sizeof Overlapped); // fill with zeroes

Next we have to create an initially non-signaled event and store its handle in Overlapped:

Overlapped.hEvent = CreateEventA(NULL, FALSE, FALSE, NULL);

We need at least one more non-signaled event that is triggered from another thread. For

example, let us suppose that this event with handle hExitEvent will be set to signaled when

the user has decided to exit the application.

To finish the preparations create an array of events:

HANDLE hEvents[] = { Overlapped.hEvent, hExitEvent };

In calls to ReadFile and WriteFile functions the last parameter must be the pointer to

Overlapped, for example:

unsigned long nBytesToRead = 1024, nReadBytes = 0;

unsigned char *pBuffer = new unsigned char[nBytesToRead];

HANDLE hFile;

int Result = ReadFile(hFile, pBuffer, nBytesToRead, &nReadBytes, &Overlapped);

If the output value is not FALSE, the I/O operation succeeded without any delays and we

may check does the number of read or written bytes match the number of bytes we wanted

to read or write (see slides Asynchronous I/O in Windows (3) and (4)).

Asynchronous I/O in Windows (8)

If the output value is FALSE, we must call GetLastError():

int error = GetLastError();

If the error code is ERROR_IO_PENDING, the I/O operation failed now but may succeed

later and we have to wait:

int WaitResult = WaitForMultipleObjects(2, hEvents, FALSE, timeout);

The waiting stops when:

• At last the I/O operation was completed, WaitResult is WAIT_OBJECT_0.

• The user wants to exit the application and triggers hExitEvent, WaitResult is

WAIT_OBJECT_0 + 1. Thus the application is always under the user's control.

• Timeout occurred (only if timeout != INFINITE), WaitResult is WAIT_TIMEOUT.

• Some system errors, WaitResult has other values

If the I/O operation was completed, we may get the number of bytes that was actually read

or written:

GetOverlappedResult(hFile, &Overlapped, &nReadBytes, FALSE);

or

GetOverlappedResult(hFile, &Overlapped, &nWrittenBytes, FALSE);

If the error code was not IO_ERROR_PENDING, the I/O operation has totally failed.

See also WindowsAsyncIO.cpp from IAX0587 Examples.zip.

Dynamic link libraries (1)

Large application consist of more that one file: *.exe + several *.dll. Why the DLLs are

necessary:

1. Very large executive files can be divided into smaller modules.

2. In development: each programmer (or group of programmers or company) can link

his part of code (a software module) as a DLL and thus work without disturbing the

other participants.

3. In maintenance: the developer changes one of the DLLs and sends it to the customer.

4. Industrial software development: one DLLs may be used in many different

applications.

There are two options for connecting *.exe and *.dll:

1. Implicit linking: the DLLs are connected to the application when Windows is loading

the application into memory.

2. Explicit linking: a DLL is connected only when the application needs and calls the

LoadLibrary() function.

Important for Visual Studio users: Project properties➔C/C++➔ Code generation➔

Runtime library has two options: multithreaded /MT (runtime support libraries are linked

to the application, the total amount of *.exe is large), or multithreaded DLL /MD

(runtime support libraries are applied as DLLs, the amount of *.exe is smaller but when

the customer's PC does not have all the necessary libraries, the application crashes).

Dynamic link libraries (2)

Dynamic link libraries (3)
To start with DLL project inform the wizard that your target is C++ Dynamic-link Library.

Dynamic link libraries (4)
Suppose that our project name is Example. The wizard creates several files, among them

file dllmain.cpp (analyzed on the next slide). First create a *.cpp file and a *.h file (by

tradition their names must match the DLL name, so in our case Example.cpp and

Example.h). In the header file write code:

#ifdef EXAMPLE_EXPORTS

#define LIBSPEC _declspec(dllexport)

#else

#define LIBSPEC _declspec(dllimport)

#endif

Constant EXAMPLE_EXPORTS (generally dllname_EXPORTS) is created by wizard and

used when the DLL code is compiled. It is not created for applications that use DLLs.

All the prototypes and definitions of functions that the DLL exports (i.e. they will be called

by applications using this DLL) must start with LIBSPEC, for example in Example.h:

LIBSPEC int Sum(int, int);

in Example.cpp:

#include "pch.h" // if the wizard created this file

#include "Example.h"

LIBSPEC int Sum(int x1, int x2)

{

return x1 + x2;

}

Dynamic link libraries (5)

The wizard-created function DllMain() from dllmain.cpp is the entry point function.

#include "pch.h"

BOOLAPIENTRY DllMain(HMODULE hModule, DWORD ul_reason_for_call,

LPVOID lpReserved)

{// DllMain() is called automatically each time when the process or one of its threads

// attaches or detaches the DLL:

// 1. In case of implicit linking when the process starts and terminates

// 2. In case of explicit linking when the application calls LoadLibrary() and

// FreeLibrary() functions

switch (ul_reason_for_call)

{

case DLL_PROCESS_ATTACH:

case DLL_THREAD_ATTACH:

// TODO: add code for initialization operations

break;

case DLL_THREAD_DETACH:

case DLL_PROCESS_DETACH:

// TODO: add code for clean-up operations

break;

}

return TRUE;

}

Dynamic link libraries (6)

Visual Studio builds two files: Example.dll and Example.lib. If the application using our

DLL applies explicit linking, it needs only Example.dll. In case of implicit linking it needs

3 files: Example.dll, Example.lib and Example.h.

In application with implicit linking calls to functions exported by DLL do not differ from

calls to standard functions. The prototypes during compiling are read from Example.h that

must be copied into the folder where the other source code files are located. However, to

link the application we need the object modules (*.obj) of DLL functions. To play a trick on

linker we need Example.lib that contains stubs – short empty functions replacing the actual

DLL functions. When the application is running, instead of stubs the functions from DLL are

called. You may copy the *.lib into folder containing source codes.

The easest way is to put DLL into the folder where the *.exe is located.

In case of explicit linking the application must load the DLL:

HMODULE handle_name LoadLibraryA(dll_filename_as_C_string);

Zero handle value means that the DLL was not loaded. To know the reason call

GetLastError(). To detach the DLL:

FreeLibrary(handle_name);

To call a function we need pointer to it:

FARPROC pointer_name = GetProcAddress(handle_name, function_name_as_C_string);

Zero result value means that the function was not found. To know the reason call

GetLastError().

Dynamic link libraries (7)

Explicit linking example:

#include "Windows.h"

HMODULE hDLL = LoadLibraryA("DLLExample.dll");

if (!hDLL)

{

cout << "DLLExample.dll not found, error " << GetLastError() << endl;

return;

}

FARPROC pSum = GetProcAddress(hDLL, "Sum");

if (pSum == NULL)

{

FreeLibrary(hDLL);

cout << "Function Sum() not found, error " << GetLastError() << endl;

return;

}

int result = ((int(*)(int, int))pSum)(5, 6); // cast pointer to actual type

FreeLibrary(hDLL);

return;

Dynamic link libraries (8)

Turn attention that C++ compiler performs so called name mangling. For example, a

function with prototype

unsigned char *Run(unsigned char *);

in DLL is named as ?Run@@YAPEAEPEAE@Z. To see the new names you can analyse

the DLL with Dependency Walker standard utility.

The C compiler keeps the original names. To force the C++ compilers to follow C naming

conventions use extern "C" linking:

extern "C"

{

LIBSPEC int Sum(int, int);

}

extern "C"

{

LIBSPEC int Sum(int x1, int x2)

{

return x1 + x2;

}

}

	Slide 1: Multithreaded applications (1)
	Slide 2: Multithreaded applications (2)
	Slide 3: Threads (1)
	Slide 4: Threads (2)
	Slide 5: Threads (3)
	Slide 6: Threads (4)
	Slide 7: Threads (5)
	Slide 8: Threads (6)
	Slide 9: Threads (7)
	Slide 10: Class this_thread
	Slide 11: Exceptions in threads (1)
	Slide 12: Exceptions in threads (2)
	Slide 13: Exceptions in threads (3)
	Slide 14: Race conditions (1)
	Slide 15: Race conditions (2)
	Slide 16: Race conditions (3)
	Slide 17: Mutexes (1)
	Slide 18: Mutexes (2)
	Slide 19: Mutexes (3)
	Slide 20: Mutexes (4)
	Slide 21: Mutexes (5)
	Slide 22: Mutexes (6)
	Slide 23: Mutexes (7)
	Slide 24: Mutexes (8)
	Slide 25: Mutexes (9)
	Slide 26: Mutexes (10)
	Slide 27: Call a function just once (1)
	Slide 28: Call a function just once (2)
	Slide 29: Call a function just once (3)
	Slide 30: Atomic variables (1)
	Slide 31: Atomic variables (2)
	Slide 32: Atomic variables (3)
	Slide 33: Thread interrupt (1)
	Slide 34: Thread interrupt (2)
	Slide 35: Thread interrupt (3)
	Slide 36: Thread interrupt (4)
	Slide 37: Condition variables (1)
	Slide 38: Condition variables (2)
	Slide 39: Condition variables (3)
	Slide 40: Condition variables (4)
	Slide 41: Condition variables (5)
	Slide 42: Condition variables (6)
	Slide 43: Condition variables (7)
	Slide 44: Condition variables (8)
	Slide 45: Condition variables (9)
	Slide 46: Condition variables (10)
	Slide 47: Condition variables (11)
	Slide 48: Condition variables (12)
	Slide 49: Condition variables (13)
	Slide 50: Condition variables (14)
	Slide 51: async and futures (1)
	Slide 52: async and futures (2)
	Slide 53: async and futures (3)
	Slide 54: async and futures (4)
	Slide 55: async and futures (5)
	Slide 56: async and futures (6)
	Slide 57: async and futures (7)
	Slide 58: async and futures (8)
	Slide 59: Packaged tasks
	Slide 60: Promises (1)
	Slide 61: Promises (2)
	Slide 62: Promises (3)
	Slide 63: Promises (4)
	Slide 64: Latches (1)
	Slide 65: Latches (2)
	Slide 66: Barriers (1)
	Slide 67: Barriers (2)
	Slide 68: Barriers (3)
	Slide 69: Barriers (4)
	Slide 70: Barriers (5)
	Slide 71: Semaphores (1)
	Slide 72: Semaphores (2)
	Slide 73: Asynchronous I/O in Windows (1)
	Slide 74: Asynchronous I/O in Windows (2)
	Slide 75: Asynchronous I/O in Windows (3)
	Slide 76: Asynchronous I/O in Windows (4)
	Slide 77: Asynchronous I/O in Windows (5)
	Slide 78: Asynchronous I/O in Windows (6)
	Slide 79: Asynchronous I/O in Windows (7)
	Slide 80: Asynchronous I/O in Windows (8)
	Slide 81: Dynamic link libraries (1)
	Slide 82: Dynamic link libraries (2)
	Slide 83: Dynamic link libraries (3) To start with DLL project inform the wizard that your target is C++ Dynamic-link Library.
	Slide 84: Dynamic link libraries (4)
	Slide 85: Dynamic link libraries (5)
	Slide 86: Dynamic link libraries (6)
	Slide 87: Dynamic link libraries (7)
	Slide 88: Dynamic link libraries (8)

